Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 22 images found }

Loading ()...

  • Proton decay experiment to determine the ultimate stability of matter..Physics: Proton Decay. Ohio, Morton Salt Mine (1985). Proton decay detector located 600 meters underground in the Morton salt mine near Cleveland, Ohio.which consists of a massive tank containing 21 cubic meters of ultra pure water, its walls lined with photomultiplier tubes, which detect faint flashes of Cerenkov light emitted by the passage of charged particles
    USA_SCI_PHY_36_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..View of the entrance of Tokyo University's Proton Decay Experiment. 1,000 50-centimeter photomultiplier tubes line the 12-meter deep tank of water form the experiment. The water contains enough protons to provide an average of one decay event per year, an event that may be detected by these tubes as the particles from the decay cause a visible light phenomenon known as Cerenkov radiation. The experiment is taking place 914 meters underground in a zinc mine below Mt. Ikenoyama to minimize the effects of cosmic rays. Japan. (1985).
    Japan_JAP_SCI_PHY_04_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..The tubular iron detector of the Kolar proton decay experiment, 6,000 feet underground in a gold mine in India. The experiment consists of 150 tons of iron tube arranged in a cubic layout. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half-life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic.   India. (1985)
    IND_SCI_PHY_04_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. Dr. Narasimham. Gold mine at Kolar, site of India's proton decay experiment. The experiment consists of 150 tons of iron tube arranged in a cubic layout 6000 feet (1828 meters) below ground. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half- life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic. India. MODEL RELEASED (1985)
    IND_SCI_PHY_01_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. View of the entrance to the French side of the Mont Blanc tunnel, inside which is located the NUSEX proton decay experiment. The tunnel runs between France & Italy under Mont Blanc. NUSEX is located several kilometers inside the tunnel, on the French side of the border, in one of the garage areas dug out of the rock at regular intervals along the tunnel. .View of the NUSEX (Nucleon Stability Experiment) proton decay detector located in a garage area off the Mont Blanc tunnel under some 5000 meters of rock which shields it from most cosmic radiation. (1985)
    FRA_SCI_PHY_04_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..The iron stack, which forms the proton decay experiment at Frejus, France. The stack consists of iron bars interspersed with Geiger tubes, and is designed to provide enough protons to bring the probability of observing a decay event into realistic proportions, made difficult by the half- life of the proton being ten to the power 34 years. (1985)
    FRA_SCI_PHY_03_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. View of the NUSEX (Nucleon Stability Experiment) proton decay detector located in a garage area off the Mont Blanc tunnel under some 5000 meters of rock which shields it from most cosmic radiation. (1985)
    FRA_SCI_PHY_02_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Physics: Proton Decay. Ohio, Morton Salt Mine (1985). Proton decay detector located 600 meters underground in the Morton salt mine near Cleveland, Ohio.which consists of a massive tank containing 21 cubic meters of ultra pure water, its walls lined with photomultiplier tubes, which detect faint flashes of Cerenkov light emitted by the passage of charged particles.
    USA_SCI_PHY_35_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. A technician checking Perspex plates at the IMB Proton Decay Experiment site. The IMB Project is named after the sponsoring institutions, University of California at Irvine, University of Michigan and the Brookhaven National Laboratory. The experiment consists of a 60-foot deep tank filled with 8,000 tons of purified water, dug into the Morton-Thiokol salt mine at Painesville, Ohio, some 2,000 feet underground. The proton decay event will be detected by an array of 2,048 photomultipliers that line the tank. Proton decay is essential in most Grand Unified Theories of the fundamental forces, but to date no firm evidence of the decay has been found.
    USA_SCI_PHY_34_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Proton decay. A technician [works with] a 20" (50cm) photomultiplier tube used in the search for proton decay. Hundreds of such tubes line a tank containing 9000 tons of water some 1000 meters underground in a zinc mine in Japan. Tokyo University's Kamiokande experiment was designed to look for decaying protons. If a proton decays, the charged particles it generates move through the water faster than light, and so generate blue 'Cerenkov' radiation. It is this that the photomultipliers detect. Computers then decide whether the event was a decay, or a collision with a solar neutrino. Japan. (1985)
    Japan_JAP_SCI_PHY_02_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. .Proton decay. A technician holding a 20" (50cm) photomultiplier tube used in the search for proton decay. Hundreds of such tubes line a tank containing 9000 tons of water some 1000 meters underground in a zinc mine in Japan. Japan. (1985)
    Japan_JAP_SCI_PHY_01_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Entrance of the gold mine at Kolar, site of India's proton decay experiment. The experiment consists of 150 tons of iron tube arranged in a cubic layout 6000 feet (1828 meters) below ground. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half- life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic. India. (1985)
    IND_SCI_PHY_05_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Mine workers passing the entrance to the Kolar proton decay experiment, 6,000 feet underground in a gold mine in India. The experiment consists of 150 tons of iron tube arranged in a cubic layout. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half-life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic. India. (1985)
    IND_SCI_PHY_03_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. .Dr. Oscar Saavedra outside the door to the tunnel experiment with traffic streaming by. Oscar Saavedra, experimenter in the Mont Blanc Proton Decay group. The experiment consists of a 150-ton cube of iron sheets, interleaved with Geiger counter tubes. The cube has to be large enough to provide a mass of protons that will bring the probability of a decay event occurring within practical bounds, made difficult by the half life of the proton being 10 to the power 34 years.  (1985).
    FRA_SCI_PHY_01_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. Dr. Masatoshi Koshiba, director of Tokyo University's Proton Decay Experiment. Dr. Koshiba is seen holding one of the 1,000 50 centimeter photomultiplier tubes that line the 12-meter deep tank of water that forms the experiment. The water contains enough protons to provide an average of one decay event per year, an event that may be detected by these tubes as the particles from the decay cause a visible light phenomenon known as Cerenkov radiation. The experiment is taking place 914 meters underground in a zinc mine below Mt. Ikenoyama to minimize the effects of cosmic rays..Japan. MODEL RELEASED (1985)
    Japan_JAP_SCI_PHY_03_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. Dr. Narasimham. Gold mine at Kolar, site of India's proton decay experiment. The experiment consists of 150 tons of iron tube arranged in a cubic layout 6000 feet (1828 meters) below ground. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half- life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic.  India. MODEL RELEASED (1985)
    IND_SCI_PHY_02_xs.jpg
  • Silicon Valley, California; Essential Elements computer recycling yard in San Jose. Owner and founder Bob Kaiser, seen here with a pan of gold plated parts recovered from computers, was a roofing contractor who panned for gold in California rivers on weekends until a friend told him "there's gold in computers". He started by scavenging dumpsters and now runs a multi-million dollar business recycling computers for precious metals and for scrap sales to mainland China. (1999).
    USA_SVAL_72_xs.jpg
  • Closeup of a traditional blue flower design being applied to a bisqueware vase at Morvarid (Pearl) Pottery Factory, Meybod,  Iran. (Also spelled "Maybod"). Painters there each has his own design assignment, often working with others applying their own elements on a single piece.
    IRN_061214_308_rwx.jpg
  • (MODEL RELEASED IMAGE). Soumana Natomo of Kouakourou, Mali, wraps his head and face for protection against many different elements. Hungry Planet: What the World Eats (p. 212). The Natomo family of Kouakourou, Mali, is one of the thirty families featured, with a weeks' worth of food, in the book Hungry Planet: What the World Eats.
    MAL01_0009_xxf1s.jpg
  • Silicon Valley, California; Essential Elements computer recycling yard in San Jose. Owner and founder Bob Kaiser was a roofing contractor who panned for gold in California rivers on weekends until a friend told him "there's gold in computers". He started by scavenging dumpsters and now runs a multi-million dollar business recycling computers for precious metals and for scrap sales to mainland China. (1999).
    USA_SVAL_69_xs.jpg
  • Professor Richard Muller, head of the micromechanic engineering department at U.C. Berkeley, with a blow-up of a 1-millimeter linear switching element. Model Released.[1990]
    USA_SCI_MICRO_06_xs.jpg
  • Silicon Valley, California; Linda Jacobson, Virtual Reality Evangelist at Silicon Graphics, Incorporated, Mountainview, California. Jacobson stands poised over the operations area of one of Silicon Graphics' RealityCenters. The high tech console operates the large wrap-around screen behind her. Jacobson's dream is to be the host of a virtual reality talk show. In the meantime, this former Wired Magazine reporter is content to tout the virtues of Immersive Visualization?the newly coined industry name, she says, for virtual reality. The tangible element of her job at SGI is to manage and market SGI's RealityCenters?facilities designed to do quick representations in a fully interactive graphical interface. These can include virtual factory tours; automobile mock-ups; and mock-up product changes depending on the desires of purchasing company. Model Released (1999).
    USA_SVAL_127_120_xs.jpg

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries