Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 782 images found }

Loading ()...

  • Sleek and elegant, the head of this unfinished robot was constructed by the Symbiotic Intelligence Group of the Kitano Symbiotic Systems Project. It is funded by an ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. SIG, as this robot is named, has a white outside shell designed by a project artist, group leader Hiroaki Kitano is a firm believer in the importance of aesthetics. Tokyo, Japan. From the book Robo sapiens: Evolution of a New Species, page 80-81.
    Japan_JAP_rs_241_qxxs.jpg
  • Fans invited off a street in Tokyo's Harajuku area to meet Pino pose with the popular robot. Pino, short for Pinocchio (after the fabled wooden puppet that becomes a human boy), is a full-bodied, child-sized, humanoid robot. Even before it demonstrates the ability of a wide range of bipedal movements it already has a national following in Japan after the release of a music video called "Can You Keep a Secret" in which the robot stars alongside one of Japan's most popular recording artists, Hikaru Utada. It has elevated Tatsuya Matsui, the artist who created the robot design, to celebrity status and provoked murmurs of dissent by some in the robotics community who see the robot as a commercial entity rather than a serious research project. Interestingly, the robot project is part of a large ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. Project creator Hiraoki Kitano  believes that the aesthetics of a robot are important in order for it to be accepted by humans into their living space. At the Kitano Symbiotic Systems, Tokyo, Japan.
    Japan_Jap_rs_451_xs.jpg
  • Pino, short for Pinocchio (after the fabled wooden puppet that becomes a human boy), is a full-bodied, child-sized, humanoid robot. Even before it demonstrates the ability of a wide range of bipedal movements it already has a national following in Japan after the release of a music video called "Can You Keep a Secret" in which the robot stars alongside one of Japan's most popular recording artists, Hikaru Utada. It has elevated Tatsuya Matsui, the artist who created the robot design, to celebrity status. The robot project is part of a large ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. Project creator Hiraoki Kitano believes that the aesthetics of a robot are important in order for it to be accepted by humans into their living space. At the Kitano Symbiotic Systems, Tokyo, Japan.
    Japan_Jap_rs_458_xs.jpg
  • Fans invited off a street in Tokyo's Harajuku area to meet Pino pose with the popular robot. Pino, short for Pinocchio (after the fabled wooden puppet that becomes a human boy), is a full bodied, child-sized, humanoid robot. Even before it demonstrates the ability of a wide range of bipedal movements it already has a national following in Japan after the release of a music video called "Can You Keep a Secret" in which the robot stars alongside one of Japan's most popular recording artists, Hikaru Utada. It has elevated Tatsuya Matsui, the artist who created the robot design (seated at left), to celebrity status. Interestingly, the robot project is part of a large ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. Project creator Hiraoki Kitano (standing with arms crossed) believes that the aesthetics of a robot are important in order for it to be accepted by humans into their living space. At the Kitano Symbiotic Systems, Tokyo, Japan.
    Japan_Jap_rs_453_xs.jpg
  • Peter Menzel at the Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII. MODEL RELEASED.
    USA_101002_307_x.jpg
  • Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII.
    USA_101002_274_x.jpg
  • Science Museum, London
    GBR_110219_23_x.jpg
  • At the Science Museum in Dallas, Texas, school children listen to a docent while watching the animated robot dinosaurs Tyrannosaurus Rex and Allosaurus (made by Dinamation International). Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_13_xs.jpg
  • A dinamation robotic model of an Apatosaurus (with the skin removed showing the metal skeleton) at the Dallas Science museum. A time exposure shows how the neck and head respond to joystick commands. Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_03_xs.jpg
  • Students in the laboratory of Professor Fumio Hara and Hiroshi Kobayashi at Science University of Tokyo work on their various robot projects, including the labs' first generation face robot. This three-dimensional human-like animated pneumatic face robot can recognize human facial expressions as well as produce realistic facial expressions in real time. The animated face robot, covered in latex "skin" is equipped with a CCD camera in the left eye and is able to collect facial image data that is used for on-line recognition of human facial expressions.
    Japan_Jap_rs_263_xs.jpg
  • Medellin, Colombia. Hungry Planet exhibit at the Parque Explora Science Center.
    COL_150611_778.jpg
  • Medellin, Colombia. Hungry Planet exhibit at the Parque Explora Science Center.
    COL_150611_777.jpg
  • Peter Menzel at the Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII. MODEL RELEASED.
    USA_101002_302_x.jpg
  • Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII.
    USA_101002_281_x.jpg
  • Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII.
    USA_101002_277_x.jpg
  • In a simulated bedroom complete with stuffed animals, tossed bedclothes, and a sleeping dummy victim, Robin R. Murphy of the University of South Florida keeps tabs on her marsupial robot; or, rather, robots. Developed to help search-and-rescue teams, the robots will work as a team. The larger "mother" is designed to roll into a disaster site. When it can go no farther, several "daughter" robots will emerge, marsupial fashion, from a cavity in its chest. The daughter robots will crawl on highly mobile tracks to look for survivors, feeding the mother robot images of what they see. Although the project is funded by the National Science Foundation and the Defense Advanced Research Projects Agency, Murphy's budget is hardly overwhelming. From the book Robo sapiens: Evolution of a New Species, page 154-155.
    USA_rs_460_qxxs.jpg
  • At the Science Museum in Dallas, Texas, school children watch the animated robot dinosaurs Apatosauruses (half size, made by Dinamation International) swing their heads close to them. Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_11_xs.jpg
  • A dinamation robotic model of an Apatosaurus (with the skin removed showing the metal skeleton) at the Dallas Science museum. A time exposure shows how the neck and head respond to joystick commands. Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_01_xs.jpg
  • First generation face robot from the Hara-Kobayashi Lab in Tokyo. Lit from behind to reveal the machinery beneath the skin. The machinery will change the contours of the robot's skin to create facial expressions. It does this by using electric actuators, which change their shape when an electric current is passed through them. The devices will return to their original shape when the current stops. This robot face was developed at the Laboratory of Fumio Hara and Hiroshi Kobayashi at the Science University, Tokyo, Japan.
    Japan_Jap_rs_2A_120_xs.jpg
  • Professor Fumio Hara of the Hara and Kobayashi Lab at Science University of Tokyo with his lab's first-generation robot head, without its skin. This three-dimensional human-like animated pneumatic face robot can recognize human facial expressions as well as produce realistic facial expressions in real time. The animated face robot, covered in latex "skin" is equipped with a CCD camera in the left eye and is able to collect facial image data that is used for on-line recognition of human facial expressions. (Draped in white veil by photographer.)
    Japan_Jap_rs_199_xs.jpg
  • After he removes its skin, Fumio Hara gets the once-over from a face robot in the lab he co-directs with Hiroshi Kobayashi at the Science University of Tokyo, Japan. The first of several face robots made in his lab, it has a CCD camera in its left eye that sends images to neural-network software that recognizes faces and their expressions. Calling upon its repertoire of programmed reactions, it activates the motors and pulleys beneath its flexible skin to produce facial expressions of its own. The project is relatively unusual in its focus, many researchers believe that making robots walk and manipulate objects is so difficult that facial expressions are not yet worth working on. Hara disagrees, arguing that robots with animated faces will communicate with humans much more easily. From the book Robo sapiens: Evolution of a New Species, page 74-75.
    Japan_JAP_rs_4_qxxs.jpg
  • Looking into the eyes of Jack the robot, Gordon Cheng tests its response to the touch of his hand. Researchers at the Electrotechnical Lab at Tsukuba, an hour away from Tokyo, Japan, are part of a project funded by the Japanese Science and Technology Agency to develop a humanoid robot as a research vehicle into complex human interactions. With the nation's population rapidly aging, the Japanese government is increasingly funding efforts to create robots that will help the elderly. Project leader Yasuo Kuniyoshi wants to create robots that are friendly and quite literally soft, the machinery will be sheathed in thick padding. In contrast to a more traditional approach, Kuniyoshi wants to program his robot to make it learn by analyzing and fully exploiting its natural constraints. From the book Robo sapiens: Evolution of a New Species, page 56-57.
    Japan_JAP_rs_279_qxxs.jpg
  • Professor Fumio Hara and Assistant Professor Hiroshi Kobayashi's female face robot (second-generation) at Science University of Tokyo, Japan, has shape-memory electric actuators that move beneath the robot's silicon skin to change the face into different facial expressions much as muscles do in the human face. The actuators are very slow to return to their original state and remedying this is one of the research projects facing the Hara and Kobayashi Lab. The robot head is lit from within by a pencil light strobe cloaked in a yellow gel. It was photographed in the neon bill-boarded area of Shinjuku, a section of Tokyo, on a rainy evening at rush hour. Robo sapiens cover image. From the book Robo sapiens: Evolution of a New Species.
    Japan_JAP_rs_1_qxxs.jpg
  • Lit from within to reveal the machinery beneath its skin, this second-generation face robot from the Hara-Kobayashi laboratory at the Science University of Tokyo, Japan, has shape-memory actuators that move like muscles creating facial expressions beneath the robot's silicon skin. Made of metal strips that change their shape when an electric current passes through them, the actuators return to their original form when the current stops. The robot head is lit from within by a pencil light strobe cloaked in a yellow gel.From the book Robo sapiens: Evolution of a New Species, page 77.
    Japan_JAP_rs_1B_120_qxxs.jpg
  • Evan Menzel at the Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII. MODEL RELEASED.
    USA_101002_298_x.jpg
  • Bradbury Science Museum, Los Alamos, NM. Displays of Manhatten Project that developed the world's first atomic bombs during WWII.
    USA_101002_272_x.jpg
  • Colombo, Sri Lanka..Sir Arthur C. Clarke sits in his wheelchair (he has post-polio syndrome) upon a checkerboard-patterned area outside the grand seaside Galle Face Hotel in Colombo, Sri Lanka. Clarke wrote 3001, the last book of his acclaimed science fiction series while living in this hotel. (He wrote 2001 while living in the Chelsea Hotel in New York City). Protecting Clarke from the fierce noon sun, is the hotel doorman, Kattarapatte Chadthu Kuttan, 70, who has worked at the Galle Face Hotel for 58 years, since age 12. (2001) Best known for the book 2001: A Space Odyssey. MODEL RELEASED
    SRI_ACC_01_xs.jpg
  • A dinamation robotic model of an Apatosaurus (with the skin removed showing the metal skeleton) at the Dallas Science museum. A time exposure shows how the neck and head respond to joystick commands. Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_16_xs.jpg
  • A dinamation robotic model of an Apatosaurus at the Dallas Science museum (with the skin removed showing the metal skeleton). Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_02_xs.jpg
  • First generation face robot from the Hara-Kobayashi Lab in Tokyo. Lit from behind to reveal the machinery beneath the skin. The machinery will change the contours of the robot's skin to create facial expressions. It does this by using electric actuators, which change their shape when an electric current is passed through them. The devices will return to their original shape when the current stops. Unfortunately these actuators proved very slow at returning to their original shape, causing an expression to remain on the face for too long. This robot face was developed at the Laboratory of Fumio Hara and Hiroshi Kobayashi at the Science University, Tokyo, Japan. The robot head is lit from within by a pencil light strobe cloaked in a yellow gel.
    Japan_Jap_rs_1a_120_xs.jpg
  • A work in progress, this still-unnamed face robot can open its eyes and smile. In the future, says its designer, Hidetoshi Akasawa, a mechanical engineering student working on a master's at the Science University of Tokyo, Japan,  it will be able to recognize and react to human facial expressions. This third-generation robot will greet smiles with smiles, frowns with frowns, mixing and matching six basic emotions in a real-time interaction that Hara calls "active human interface." From the book Robo sapiens: Evolution of a New Species, page 72.
    Japan_JAP_rs_262_qxxs.jpg
  • Surrounded by his plans and sketches, designer Tatsuya Matsui (seated) contemplates the next phase in the evolution of SIG, the robot under development by Hiroaki Kitano (standing). Kitano, a senior researcher at Sony Computer Science Laboratories, Inc. and director of this government-funded project, wants to endow SIG with sufficient eyesight, hearing, and processing power to follow instructions given by several people in a crowd. The goal is ambitious, but Kitano is well-placed to achieve it. In 1997, he created the now-famous RoboCup, in which robot teams from around the world meet every year to play soccer in an indoor arena. Japan. From the book Robo sapiens: Evolution of a New Species, page 83.
    Japan_JAP_rs_242_qxxs.jpg
  • Science Museum, London
    GBR_110219_19_x.jpg
  • Student Yousuke Kato points to a female face robot created at the Science University of Tokyo, Japan, Fumio Hara Robotics Lab. The female face robot (secondgeneration) has shape-memory electric actuators that move beneath the robots' silicon skin to change the face into different facial expressions much as muscles do in the human face. The research robot undergoes a metamorphosis with each class of students assigned to work on it. The latest iteration allows the robot's face to mold into six different expressions: happiness, sadness, fear, disgust, anger, and surprise. In some images, the computer monitor displays a graphical representation of the software creating the expression on the robot.
    Japan_Jap_rs_707_xs.jpg
  • Photographed at a baptismal font in the chapel of Schloss Burlinghoven, a nineteenth-century castle on the campus of the German National Center for Information Technology, the walking robot Sir Arthur stands with its creator, research scientist Frank Kirchner. Sir Arthur began as a relatively simple robot with sonarlike "vision" that prevented it from trapping itself in corners and snagging itself on obstacles. It was successful enough that Kirchner obtained funding from the U.S. Defense Advanced Research Projects Agency to assemble a team of researchers from diverse disciplines: computer science, math, physics, and electronic and mechanical engineering, to build an enhanced, solar-powered version that can cross rough outdoor terrain. Germany. From the book Robo sapiens: Evolution of a New Species, page 112
    GER_rs_2_qxxs.jpg
  • Sir Arthur C. Clarke in Colombo, Sri Lanka. Sir Arthur is best known for the book 2001: A Space Odyssey. MODEL RELEASED
    SRI_ACC_77_120_xs.jpg
  • Sir Arthur C. Clarke, composite. Colombo, Sri Lanka. Sir Arthur C. Clarke gazes at the moon. "I can never look now at the Milky Way without wondering from which of those banked clouds of stars the emissaries are coming," one of Arthur C. Clarke's characters says in the short story "The Sentinel" (1948), which was the basis for his book 2001 - A Space Odyssey. MODEL RELEASED
    SRI_ACC_74_xs.jpg
  • In a situation all too familiar to robotics researchers, Atsuo Takanishi (on right) is trying to make his creation work. His research team's robot, WE-3RIII (Waseda Eye Number 3 Refined Version III) can follow a light with its digital-camera eyes, moving its head if needed. In the laboratory the robot worked perfectly, its movements almost disconcertingly lifelike. But while being installed at a robot exhibit in Tokyo, WE-3RIII inexplicably and violently threw back its head, tearing apart its own wiring. Now Takanishi and one of his students are puzzling over the problem and will solve it only in the early hours of the morning before the exhibit opened. Japan.From the book Robo sapiens: Evolution of a New Species, page 40-41..
    Japan_JAP_rs_12_qxxs.jpg
  • National Museum of Nuclear Sciece and History, Albuquerque, NM
    USA_101003_367_x.jpg
  • National Museum of Nuclear Sciece and History, Albuquerque, NM
    USA_101003_341_x.jpg
  • Colombo, Sri Lanka.Sir Arthur C. Clarke donned scuba gear for this photograph for the first time since 1991 and dives in the pool at the Otter Swim Club. Clarke moved to Sri Lanka in part for the excellent scuba diving more than 40 years ago. He is too frail to dive in the ocean (he has post-polio syndrome). He is seen here gesturing obscenely in response to Peter Menzel's gesture asking him to swim overhead one more time to take another photo. Sir Arthur is best known for the book 2001: A Space Odyssey. MODEL RELEASED
    SRI_ACC_127_xs.jpg
  • Colombo, Sri Lanka.Sir Arthur C. Clarke holds a DVD copy of the movie 2001: A Space Odyssey. Clarke wrote, "Any sufficiently advanced technology is indistinguishable from magic." Referring to the DVD in his hand, he said, "If I were able to give Thomas Edison this disc, he would have no idea of what it was or how it worked. It would be magic." Sir Arthur is best known for the book 2001: A Space Odyssey. MODEL RELEASED
    SRI_ACC_122_xs.jpg
  • Here COG,(short for cognitive) is seen using a slinky toy. Cog's designer is Rodney Brooks, head of MIT's Artificial Intelligence Laboratory, in Cambridge, Mass. Although some might be discouraged by the disparity between the enormous amount of thought and labor that went into it and the apparently meager results (simulating the intelligence of a six month old baby), Brooks draws a different conclusion. That so much is required to come close to simulating a baby's mind, he believes, only shows the fantastic complexity inherent in the task of producing an artificially intelligent humanoid robot. Robo sapiens page 59
    Usa_rs_5D_120_nxs.jpg
  • Here COG,(short for cognitive) is seen using a slinky toy. Cog's designer is Rodney Brooks, head of MIT's Artificial Intelligence Laboratory, in Cambridge, Mass. Although some might be discouraged by the disparity between the enormous amount of thought and labor that went into it and the apparently meager results (simulating the intelligence of a six month old baby), Brooks draws a different conclusion. That so much is required to come close to simulating a baby's mind, he believes, only shows the fantastic complexity inherent in the task of producing an artificially intelligent humanoid robot. Robo sapiens page 59
    Usa_rs_429_120_nxs.jpg
  • Atsuo Takanishi of the Humanoid Research Laboratory, Waseda University, Tokyo, Japan, conversing with writer Faith D'Aluisio at his university laboratory. One of the leading researchers at Japan's Waseda University's long-term robotics project, mechanical engineer Atsuo Takanishi studied under the late Ichiro Kato, a robotics pioneer, and superb fundraiser, who made the school into the epicenter of the field. Continuing Kato's emphasis on "biomechatronics", replicating the functions of animals with machines, Takanishi now supervises the research group that produced WABIAN-RII (behind him in photograph). From the book Robo sapiens: Evolution of a New Species, page 18.
    Japan_JAP_rs_287_qxxs.jpg
  • One of the leading researchers at Japan's Waseda University's long-term robotics project, mechanical engineer Atsuo Takanishi studied under the late Ichiro Kato, a robotics pioneer, and superb fundraiser, who made the school into the epicenter of the field. Continuing Kato's emphasis on "biomechatronics", replicating the functions of animals with machines, Takanishi now supervises the research group that produced WABIAN-RII (behind him in photograph). Japan. From the book Robo sapiens: Evolution of a New Species, page 39.
    Japan_JAP_rs_254_qxxs.jpg
  • Here COG,(short for cognitive) is seen using a slinky toy. Cog's designer is Rodney Brooks, head of MIT's Artificial Intelligence Laboratory, in Cambridge, Mass. Although some might be discouraged by the disparity between the enormous amount of thought and labor that went into it and the apparently meager results (simulating the intelligence of a six month old baby), Brooks draws a different conclusion. That so much is required to come close to simulating a baby's mind, he believes, only shows the fantastic complexity inherent in the task of producing an artificially intelligent humanoid robot. Robo sapiens page 59
    Usa_rs_715_120_xs.jpg
  • With its carapace not yet built, the mechanism inside the head of Cog is revealed against a photographer's lights. Cog's designer is Rodney Brooks, head of MIT's Artificial Intelligence Laboratory, in Cambridge, MA. So much is required to come close to simulating a baby's mind, he believes, only shows the fantastic complexity inherent in the task of producing an artificially intelligent humanoid robot. From the book Robo sapiens: Evolution of a New Species, page 59.
    USA_rs_348_qxxs.jpg
  • Cardiology ultrasound on a dog. Veterinarian School, University of California, Davis.
    USA_ANML_09_xs.jpg
  • New Lava flow from Kilauea eruption. Kilauea most recently erupted in 1983 and lava has flown consistently since then. It is one of the world's most active volcanoes. Hawaii Big Island. USA.
    USA_HI_38_xs.jpg
  • Lava flowing into sea from Kilauea eruption at Volcano National Park. Kilauea most recently erupted in 1983 and lava has flown consistently since then. It is one of the world's most active volcanoes. Big Island, Hawaii. USA.
    USA_HI_37_xs.jpg
  • Lava flows into the sea from Kilauea Volcano.
    USA_HI_02_xs.jpg
  • Ladybugs swarming on top of Timber Peak above the Langmuir Atmospheric Research Lab, near Socorro, New Mexico. USA..
    USA_INSC_1_xs.jpg
  • Simulated cave formations at Arizona-Sonora Desert Museum. USA.
    USA_AZ_12_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. View of the NUSEX (Nucleon Stability Experiment) proton decay detector located in a garage area off the Mont Blanc tunnel under some 5000 meters of rock which shields it from most cosmic radiation. (1985)
    FRA_SCI_PHY_02_xs.jpg
  • Colombo, Sri Lanka. Sir Arthur C. Clarke's daily dose of afternoon table tennis at the Otter Club. He is playing against one of his valets Lenin, and takes his game very seriously. Published in Stern Magazine, 28 December 2000, page 77. (He has post-polio syndrome) Best known for the book 2001: A Space Odyssey. MODEL RELEASED
    SRI_ACC_20_xs.jpg
  • Assortment of the genetic varieties (hybrids) of corn produced for experimental cultivation. Different strains display variation in thickness, length and color of the cob, and the number of grains on the cob. Escagen Corporation, San Carlos, California.  [1987].
    USA_SCI_BIOT_12_xs.jpg
  • Lick Observatory on Mt. Hamilton. San Jose, California. Old computer equipment put out for recycling/trash pickup. Outside the 120-inch telescope. (Dome is lit by the full moon, 30-second exposure.)  Exoplanets & Planet Hunters
    USA_Lick_060513_194_rwx.jpg
  • Lick Observatory on Mt. Hamilton. San Jose, California. 120-inch telescope. Chris McCarthy, astronomer.  Exoplanets & Planet Hunters
    USA_Lick_060513_072_rwx.jpg
  • In his UC Berkeley, CA office, astronomer Geoff Marcy is discussing the effects of Einstein's theory of relativity in the measurements of the Doppler shift that allow his team to detect planets.   They make all of their observations from the Earth that moves so fast in its orbit around the Sun that they must include the theory of relativity in their calculations. Exoplanets & Planet Hunters.
    USA_060516_091_rwx.jpg
  • Colin Angle gives life to Genghis at the M.I.T. Insect Robot Lab in Cambridge, Massachusetts. Robo sapiens Project.
    Usa_sci_ir_9B_nxs.jpg
  • In the East Bay suburb of Walnut Creek, near San Francisco, Will Wright and family collectively in their garage preparing their creation for "Robot Wars"(daughter Cassidy 11, nephew Patrick 14, and Will). Later that week, in a battle pit ringed by six-foot sheets of bulletproof glass and a sellout crowd, radio-controlled gladiators battle their robots to the mechanical death. Will Wright developed the Sims software games.
    Usa_rs_713_xs.jpg
  • Harold Cohen, former director of the Center for Research in Computing and the Arts (CRCA), is the author of the celebrated AARON program, an ongoing research effort in autonomous machine (art making) intelligence. Cohen is seen looking at his creation, a robot "artist" that painted the picture in the background. California, USA
    Usa_rs_700_120_xs.jpg
  • In Death Valley, California, the team responsible for a Russian Mars Rover 'Marsokhod' tests its vehicle to see how it will handle its maneuvering along the similar rocky terrain. The Planetary Society sponsored the test. Robo sapiens Project.
    Usa_rs_650_xs.jpg
  • In Palo Alto, CA Gavin Miller and his wife Nancy test his robotic snake in the driveway of their home. Miller builds the snakes in his garage. Gavin's dog barks a the snake to the amusement of his wife, Nancy.
    Usa_rs_647_xs.jpg
  • To study the flight control behavior of fruit flies, a tiny fly is glued to a probe positioned in an electronic arena of hundreds of flashing LEDs that can also measure its wing motion and flight forces. By altering its wing motion, the fly itself can change the display of the moving electronic panorama, tricking the fly into "thinking" it is really flying through the air. The amplified humming of the fruit fly as it buzzes through its imaginary flight surrounded by computers in the darkened lab is quite bizarre. UC Berkeley, CA, USA.
    Usa_rs_619_xs.jpg
  • MODEL RELEASED. Kismet robot interacting with a mirror held by researcher Cynthia Breazeal. Kismet is a robot that responds with facial expressions to her actions. It has been developed for the study of action recognition and learning, particularly in children. Kismet has several moods, which it displays as expressions on its face. It responds to visual stimuli like a baby. When there are no stimuli, it shows a sad expression. When paid attention to, as here, Kismet looks interested. Like a child, Kismet responds best to bright colours and moderate movements. Photographed at Massachusetts Institute of Technology (MIT), Cambridge, USA.
    Usa_rs_565_xxs.jpg
  • Burying his face in a 3-D viewing system, Volkmar Falk of the Leipzig Herzzentrum (Germany's most important cardiac center) explores the chest cavity of a cadaver with the da Vinci robotic surgical system. Thomas Krummel (standing), chief of surgery at Stanford University's teaching hospital, observes the procedure on a monitor displaying images from a pair of tiny cameras in one of the three "ports" Falk has cut into the cadaver. From the book Robo sapiens: Evolution of a New Species, page 176.
    Usa_rs_424_120_xs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_42_nxxs.jpg
  • The product of a long quest, Robot III, an artificial cockroach built by mechanical engineer Roger Quinn (in blue shirt) and biologist Roy Ritzmann at Case Western Reserve University in Cleveland, OH, required seven years to construct. (Quinn directs the Biorobotics Lab at the university.) From the book Robo sapiens: Evolution of a New Species, page 102-103.
    USA_rs_426_120_qxxs.jpg
  • AeroVironment engineers (left to right) Marty Spadaro, Paul Trist Jr., Tom DeMarino, and Carlos Miralles cluster around the working prototype of the Mars glider, Otto. NASA sees an airplane as an important tool for exploring Mars early in the 21st century, and AeroVironment is seeking the honor of building the plane. From the book Robo sapiens: Evolution of a New Species, page 158 top.
    USA_rs_415_qxxs.jpg
  • Painted pink to give competitors a false sense of its harmlessness, Mouser Catbot 2000 has two deadly sawblades in its nose and tail and a hidden flipper on its back for overturning enemy robots. Built by Californians Fon Davis and April Mousley (left to right), the machine deftly trounced Vlad the Impaler, a larger machine with a hydraulic spike that shot from its snout  at Robot Wars, a two-day festival of mechanical destruction at San Francisco's Fort Mason Center. California. From the book Robo sapiens: Evolution of a New Species, page 205.
    USA_rs_397_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_37_nxs.jpg
  • The ghoulish host for Secrets of the Crypt Keeper's Haunted House, a Saturday-morning television show for kids, is an animatronic; that is, lifelike electronic-robot. Built by AVG, of Chatsworth, California, the Crypt Keeper can show almost every human expression, although it must first be programmed to do so. Larger gestures of head and hand are created not by programming, but by electronically linking the robotic figure to an actor. From the book Robo sapiens: Evolution of a New Species, page 207.
    USA_rs_376_qxxs.jpg
  • Surrounded by the robots used in his Georgia Institute of Technology laboratory, computer scientist Ronald C. Arkin specializes in behavior-based robots, he's written a textbook with that name. Concerned more with software than hardware, he buys robots from companies and modifies their behavior, increasing their capacities. But outside such places, what Arkin calls "the physical situatedness" of the robot is "absolutely crucial" to its ability to act and react appropriately. Like many of his colleagues, he has been inspired by the way insects and other nonhuman life forms have adapted to their environment. From the book Robo sapiens: Evolution of a New Species, page 153.
    USA_rs_331_qxxs.jpg
  • Leaning over the glass-topped workbench in the spare bedroom of his Los Alamos, NM condominium, where he builds most of his robot creatures, Mark Tilden shines a flashlight on what will become the head of Nito 1.0. Many of the components scattered over his desk are simple, cheap, and (by contemporary standards) primitive; many are ripped from junked tape decks, cameras, and VCRs. Nito will be Tilden's most ambitious creation yet. (The name stands for "Neural Implementation of a Torso Organism.") When complete, he says, this easily built machine should interact in a simianlike fashion in its world. From the book Robo sapiens: Evolution of a New Species, page 121..
    USA_rs_212_qxxs.jpg
  • Wielding a paint brush, a robot touches up its human master in this photo-illustration at the SARCOS robot company in Salt Lake City, UT. From the book Robo sapiens: Evolution of a New Species, page 20-21.
    USA_rs_142_120_qxxs.jpg
  • The most sophisticated machines don't necessarily triumph in the violent gladiatorial battles at San Francisco's Robot Wars, as shown when Tazbot (with turret), a simple, remote-controlled vehicle, forces a much more sophisticated, autonomously moving opponent to self-destruct. San Francisco, CA. From the book Robo sapiens: Evolution of a New Species, page 204 bottom.
    USA_rs_138_qxxs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident. Here he is using a pitchfork to throw hay over the fence to his horses.
    USA_SCI_MEARM_03_xs.jpg
  • Eric Hvinden puts sound onto a Dinamation International Triceratops at the company's factory near Los Angeles, California. Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_14_xs.jpg
  • Snarling at the rush-hour traffic, this new animatronic; that is, lifelike and electronic replica of an Allosaurus is returning from the paint shop to the Dinamation factory in Orange County, California. Dinamation International, a California-based company, makes a collection of robotic dinosaurs. The dinosaurs are sent out in traveling displays to museums around the world. The dinosaur's robotic metal skeleton is covered by rigid fiberglass plates, over which is laid a flexible skin of urethane foam. The plates and skin are sculpted and painted to make the dinosaurs appear as realistic as possible. The creature's joints are operated by compressed air and the movements controlled by computer.
    USA_SCI_DINO_08_xs.jpg
  • The robot, called Kenta, (Ken means tendon in Japanese) has a flexible spinal column that resembles that of the human body; 96 motors; a five-joint neck; a 10 joint spine (each with 3 degrees of freedom); and fast-moving stereo vision that can track a flesh colored object. The neck and torso are coordinated to respond in concert with the eye's movement. Student researchers create movements for the robot in simulation and then feed the simulations back to the robot. Professor Hirochika Inoue thinks that developing robots with this structure of incredibly decreased weight and fewer parts will reduce the cost and the complexity of robots in the future for more widespread application. Inoue-Inaba Robotic Lab, University of Tokyo, Japan.
    Japan_Jap_rs_366_xs.jpg
  • In a spanking new, richly-appointed research center above a busy shopping street in Tokyo's stylish Harajuku district, Hiroaki Kitano shows off his robot soccer team. In addition to Kitano's humanoid-robot work at Kitano Symbiotic Systems Project, a five-year, government-funded ERATO project, Kitano is the founder and chair of Robot World Cup Soccer (RoboCup), an annual soccer competition for robots. There are four classes of contestants: small, medium, simulated, and dog (using Sony's programmable robot dogs). Kitano's small-class RoboCup team consists of five autonomous robots, which kick a golf ball around a field about the size of a ping-pong table. An overhead video camera feeds information about the location of the players to remote computers, which use the data to control the robots' offensive and defensive moves. Japan. From the book Robo sapiens: Evolution of a New Species, page 213 top.
    Japan_JAP_rs_31_qxxs.jpg
  • Many Japanese roboticists were inspired as a child by Tetsuwan Atomu (Astro Boy), a popular Japanese cartoon about a futuristic robot boy who helps human beings (here, it is a 15-centimeter Astro Boy action figure). Astro Boy, drawn in the 1950's, will soon be the star of a major motion picture. In the story line, his birthdate is in April of 2003. Japan. From the book Robo sapiens: Evolution of a New Species, page 197.
    Japan_JAP_rs_244_qxxs.jpg
  • By creating a simulacrum of the human eye, the DB project leader and biophysicist Mitsuo Kawato hopes to learn more about human vision. The DB project is funded by the Exploratory Research for Advanced Technology (ERATO) Humanoid Project and led by independent researcher Mitsuo Kawato. Based at a research facility 30 miles outside of Kyoto, Japan. From the book Robo sapiens: Evolution of a New Species, page 55.
    Japan_JAP_rs_227_qxxs.jpg
  • Monitor view of heart surgeons watching their progress while performing minimally invasive heard surgery during a cardiac conference at Herzzentrum: Heart Center in Leipzig, Germany.
    Ger_rs_116_xs.jpg
  • Kevin Kelly, in his home office in Pacifica, California.<br />
Senior Maverick for Wired.    <br />
Author of What Technology Wants.
    USA_100418_174_x.jpg
  • Kevin Kelly, in his home office in Pacifica, California.<br />
Senior Maverick for Wired.    <br />
Author of What Technology Wants.
    USA_100418_124_x.jpg
  • Kevin Kelly, in his home office in Pacifica, California.<br />
Senior Maverick for Wired.    <br />
Author of What Technology Wants.
    USA_100418_113_x.jpg
  • Kevin Kelly, in his home office in Pacifica, California.<br />
Senior Maverick for Wired.    <br />
Author of What Technology Wants.
    USA_100418_065_x.jpg
  • Evan Menzel photographing trinitite at Site Trinity, ground zero, on the White Sands Missile Range in S. New Mexico. Site of the world's first atomic explosiion on August 6, 1945. The atomic bomb was developed by the Manhatten Project. The Manhattan Project refers to the effort during World War II by the United States, in collaboration with the United Kingdom, Canada, and other European physicists, to develop the first nuclear weapons. Formally designated as the Manhattan Engineering District (MED), it refers specifically to the period of the project from 1942-1946 under the control of the U.S. Army Corps of Engineers, under the administration of General Leslie R. Groves, with its scientific research directed by the American physicist J. Robert Oppenheimer. The project succeeded in developing and detonating three nuclear weapons in 1945: a test detonation on July 16 (the Trinity test) near Alamogordo, New Mexico; an enriched uranium bomb code-named "Little Boy" detonated on August 6 over Hiroshima, Japan; and a plutonium bomb code-named "Fat Man" on August 9 over Nagasaki, Japan. (http://en.wikipedia.org/wiki/Manhattan_Project) MODEL RELEASED.
    USA_101002_064_x.jpg
  • National Museum of Nuclear Sciece and History, Albuquerque, NM
    USA_101003_342_x.jpg
  • At Burning Man, PhD tech nerd and artist Austin Richards demonstrates the power of his Tesla coil, which he has named Megavolt. Richards is protected from the electrical strikes by a special suit. Burning Man is a performance art festival known for art, drugs and sex. It takes place annually in the Black Rock Desert near Gerlach, Nevada, USA.
    USA_BMAN_91_xs.jpg
  • Veterinarian School - Tropical diseases research lab. MODEL RELEASED.
    USA_ANML_13_xs.jpg
  • Zaiger Genetics: Apricots in test tubes in the tissue culture lab run by Grant Zaiger, Floyd's son. Floyd Zaiger (Born 1926) is a biologist who is most noted for his work in fruit genetics. Zaiger Genetics, located in Modesto, California, USA, was founded in 1958. Zaiger has spent his life in pursuit of the perfect fruit, developing both cultivars of existing species and new hybrids such as the pluot and the aprium. Tissue culture Lab. 1983.
    USA_AG_ZAIG_04_xs.jpg
  • Students listening for ultrasonic acoustic emissions from a grape vine at UC Davis, California. (1986) Viticulture/Oenology MODEL RELEASED. USA.
    USA_WINE_09_xs.jpg
  • Tufa towers in Mono Lake at dawn with crescent moon. Mono Lake lies near the town of Lee Vining. It is at least 700,000 years old and one of the oldest continuously existing lakes on the continent. Tufa towers (photographed) are made from calcium and carbonate combine to form limestone, which builds up over time around the lake bottom spring openings. Declining lake levels have exposed the tufa towers we see today. Some of the tufa towers are up to 30 feet high. Route 395: Eastern Sierra Nevada Mountains of California.
    USA_CA_ES_35_xs.jpg
  • Tufa towers in Mono Lake. Mono Lake lies near the town of Lee Vining. It is at least 700,000 years old and one of the oldest continuously existing lakes on the continent. Tufa towers (photographed) are made from calcium and carbonate combine to form limestone, which builds up over time around the lake bottom spring openings. Declining lake levels have exposed the tufa towers we see today. Some of the tufa towers are up to 30 feet high. Route 395: Eastern Sierra Nevada Mountains of California.
    USA_CA_ES_34_xs.jpg
  • Tufa towers in Mono Lake. Mono Lake lie near the town of Lee Vining. It is at least 700,000 years old and one of the oldest continuously existing lakes on the continent. Tufa towers (photographed) are made from calcium and carbonate combine to form limestone, which builds up over time around the lake bottom spring openings. Declining lake levels have exposed the tufa towers we see today. Some of the tufa towers are up to 30 feet high. Route 395: Eastern Sierra Nevada Mountains of California.
    USA_CA_ES_31_xs.jpg
  • Guam; Earl Campbell's brown tree snake research in a jungle area near Andersen Air Force Base. Snakes trapped, tagged, sexed, measured, weighed and released. . There are no birds on the Pacific Island of Guam thanks to the Brown Tree Snake. These hungry egg-eating snakes have overrun the tropical island after arriving on a lumber freighter from New Guinea during World War II. Besides wiping out the bird population, Brown Tree Snakes cause frequent power outages: they commit short circuit suicide when climbing between power lines.
    GUM_08_xs.jpg
Next

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries