Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 312 images found }

Loading ()...

  • Fans invited off a street in Tokyo's Harajuku area to meet Pino pose with the popular robot. Pino, short for Pinocchio (after the fabled wooden puppet that becomes a human boy), is a full-bodied, child-sized, humanoid robot. Even before it demonstrates the ability of a wide range of bipedal movements it already has a national following in Japan after the release of a music video called "Can You Keep a Secret" in which the robot stars alongside one of Japan's most popular recording artists, Hikaru Utada. It has elevated Tatsuya Matsui, the artist who created the robot design, to celebrity status and provoked murmurs of dissent by some in the robotics community who see the robot as a commercial entity rather than a serious research project. Interestingly, the robot project is part of a large ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. Project creator Hiraoki Kitano  believes that the aesthetics of a robot are important in order for it to be accepted by humans into their living space. At the Kitano Symbiotic Systems, Tokyo, Japan.
    Japan_Jap_rs_451_xs.jpg
  • Pino, short for Pinocchio (after the fabled wooden puppet that becomes a human boy), is a full-bodied, child-sized, humanoid robot. Even before it demonstrates the ability of a wide range of bipedal movements it already has a national following in Japan after the release of a music video called "Can You Keep a Secret" in which the robot stars alongside one of Japan's most popular recording artists, Hikaru Utada. It has elevated Tatsuya Matsui, the artist who created the robot design, to celebrity status. The robot project is part of a large ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. Project creator Hiraoki Kitano believes that the aesthetics of a robot are important in order for it to be accepted by humans into their living space. At the Kitano Symbiotic Systems, Tokyo, Japan.
    Japan_Jap_rs_458_xs.jpg
  • Fans invited off a street in Tokyo's Harajuku area to meet Pino pose with the popular robot. Pino, short for Pinocchio (after the fabled wooden puppet that becomes a human boy), is a full bodied, child-sized, humanoid robot. Even before it demonstrates the ability of a wide range of bipedal movements it already has a national following in Japan after the release of a music video called "Can You Keep a Secret" in which the robot stars alongside one of Japan's most popular recording artists, Hikaru Utada. It has elevated Tatsuya Matsui, the artist who created the robot design (seated at left), to celebrity status. Interestingly, the robot project is part of a large ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. Project creator Hiraoki Kitano (standing with arms crossed) believes that the aesthetics of a robot are important in order for it to be accepted by humans into their living space. At the Kitano Symbiotic Systems, Tokyo, Japan.
    Japan_Jap_rs_453_xs.jpg
  • Students in the laboratory of Professor Fumio Hara and Hiroshi Kobayashi at Science University of Tokyo work on their various robot projects, including the labs' first generation face robot. This three-dimensional human-like animated pneumatic face robot can recognize human facial expressions as well as produce realistic facial expressions in real time. The animated face robot, covered in latex "skin" is equipped with a CCD camera in the left eye and is able to collect facial image data that is used for on-line recognition of human facial expressions.
    Japan_Jap_rs_263_xs.jpg
  • The H7 robot walks without a safety harness at the Inoue-Inaba Robotics Lab. A joystick operating student, seated at right maneuvers the robot. Research Associate Satoshi Kagami (wearing a suit in the photo) walks with the robot, armed with its "kill switch" in case the robot malfunctions. Its predecessor, H6 hangs at left, near another student who is ready to step in, in the event that the robot falls. The researchers are fairly relaxed during the demonstration compared to those in other labs. University of Tokyo, Japan.
    Usa_rs_362_xs.jpg
  • Researchers adjust the mechanism of WE-3RIII, Waseda University's head robot, after it accidentally whiplashed into its own wires. In a situation all too familiar to robotics researchers, Atsuo Takanishi ( hand on right) is trying to make his creation work. His research team's robot, WE-3RIII (Waseda Eye Number 3 Refined Version III) can follow a light with its digital-camera eyes, moving its head if needed. In the laboratory the robot worked perfectly, its movements almost disconcertingly lifelike. But while being installed at a robot exhibit in Tokyo, WE-3RIII inexplicably and violently threw back its head, tearing apart its own wiring. Now Takanishi and one of his students (hand on left) are puzzling over the problem and will solve it only in the early hours of the morning before the exhibit opened. Japan. From the book Robo sapiens: Evolution of a New Species, page 233.
    Japan_JAP_rs_59_qxxs.jpg
  • In a spanking new, richly-appointed research center above a busy shopping street in Tokyo's stylish Harajuku district, Hiroaki Kitano shows off his robot soccer team. In addition to Kitano's humanoid-robot work at Kitano Symbiotic Systems Project, a five-year, government-funded ERATO project, Kitano is the founder and chair of Robot World Cup Soccer (RoboCup), an annual soccer competition for robots. There are four classes of contestants: small, medium, simulated, and dog (using Sony's programmable robot dogs). Kitano's small-class RoboCup team consists of five autonomous robots, which kick a golf ball around a field about the size of a ping-pong table. An overhead video camera feeds information about the location of the players to remote computers, which use the data to control the robots' offensive and defensive moves. Japan. From the book Robo sapiens: Evolution of a New Species, page 213 top.
    Japan_JAP_rs_31_qxxs.jpg
  • Robot designer Yoshihiro Fujita stares into the electronic eyes of R100, his personal-assistant robot. The robot can recognize faces, identify a few hundred words of Japanese, and obey simple commands, but its most important job, Fujita says, is to help families keep in touch. If Mom at work wants to remind Junior at home to study, she can E-mail the robot, which will deliver the message verbally. To take the sting out of the command, the robot can sing and dance, a charming feature that is one reason NEC is inching toward commercializing the project. Japan. From the book Robo sapiens: Evolution of a New Species, page166-167.
    Japan_JAP_rs_260_qxxs.jpg
  • Robot surgery. Surgeon (lower left) performing minimally invasive surgery (MIS) on a patient's heart using da Vinci, a remotely-controlled robot surgeon (centre right). The surgeon views a three- dimensional image of the operation site in the black box at left. The robot arms are controlled using instruments under the box. An endoscopic view of the area from the robot is seen at upper right. Another surgeon is examining chest X-rays at upper left. The da Vinci system allows precise control of surgical tools through an incision just 1cm wide, with greater control than manual MIS procedures. Da Vinci was designed by Intuitive Surgical Incorporated, based in California, USA.
    Usa_rs_716_120_xs.jpg
  • In a spanking new, richly-appointed research center above a busy shopping street in Tokyo's stylish Harajuku district, Hiroaki Kitano shows off his robot soccer team. In addition to Kitano's humanoid-robot work at Kitano Symbiotic Systems Project, a five-year, government-funded ERATO project, Kitano is the founder and chair of Robot World Cup Soccer (RoboCup), an annual soccer competition for robots. There are four classes of contestants: small, medium, simulated, and dog (using Sony's programmable robot dogs). Kitano's small-class RoboCup team consists of five autonomous robots, which kick a golf ball around a field about the size of a ping-pong table. An overhead video camera feeds information about the location of the players to remote computers, which use the data to control the robots' offensive and defensive moves. Japan. From the book Robo sapiens: Evolution of a New Species, page 213 bottom.
    Japan_JAP_rs_30_qxxs.jpg
  • Sewer inspection robot. Kurt I, a sewer inspection robot prototype. Here, the robot is moving through a simulated sewer at a German government-owned research and development centre. Unlike its predecessors, the Kurt I, and its successor, Kurt II, are cable-less, autonomous robots, which have their own power supply and piloting system. Kurt uses two low-powered lasers (upper centre) to beam a grid (red, lower centre) into its path. When the gridlines curve, indicating a bend or intersection in the pipe, the robot matches the curves against a digital map in its computer. It will then pilot itself to its destination. Photographed in Bonn, Germany.
    Ger_rs_40_xs.jpg
  • The robot, called Kenta, (Ken means tendon in Japanese) has a flexible spinal column that resembles that of the human body; 96 motors; a five-joint neck; a10 joint spine (each with 3 degrees of freedom); and fast-moving stereo vision that can track a flesh color object. The neck and torso are coordinated to respond in concert with the eye's movement. Student researchers create movements for the robot in simulation and then feed the simulations back to the robot. Professor Hirochika Inoue thinks that developing robots with this structure of incredibly decreased weight and fewer parts will reduce the cost and the complexity of robots in the future for more widespread application. Inoue-Inaba Robotic Lab, University of Tokyo, Japan.
    Japan_Jap_rs_368_xs.jpg
  • The robot, called Kenta, (Ken means tendon in Japanese) has a flexible spinal column that resembles that of the human body; 96 motors; a five-joint neck; a 10 joint spine (each with 3 degrees of freedom); and fast-moving stereo vision that can track a flesh colored object. The neck and torso are coordinated to respond in concert with the eye's movement. Student researchers create movements for the robot in simulation and then feed the simulations back to the robot. Professor Hirochika Inoue thinks that developing robots with this structure of incredibly decreased weight and fewer parts will reduce the cost and the complexity of robots in the future for more widespread application. Inoue-Inaba Robotic Lab, University of Tokyo, Japan.
    Japan_Jap_rs_366_xs.jpg
  • First generation face robot from the Hara-Kobayashi Lab in Tokyo. Lit from behind to reveal the machinery beneath the skin. The machinery will change the contours of the robot's skin to create facial expressions. It does this by using electric actuators, which change their shape when an electric current is passed through them. The devices will return to their original shape when the current stops. Unfortunately these actuators proved very slow at returning to their original shape, causing an expression to remain on the face for too long. This robot face was developed at the Laboratory of Fumio Hara and Hiroshi Kobayashi at the Science University, Tokyo, Japan. The robot head is lit from within by a pencil light strobe cloaked in a yellow gel.
    Japan_Jap_rs_1a_120_xs.jpg
  • Looking into the eyes of Jack the robot, Gordon Cheng tests its response to the touch of his hand. Researchers at the Electrotechnical Lab at Tsukuba, an hour away from Tokyo, Japan, are part of a project funded by the Japanese Science and Technology Agency to develop a humanoid robot as a research vehicle into complex human interactions. With the nation's population rapidly aging, the Japanese government is increasingly funding efforts to create robots that will help the elderly. Project leader Yasuo Kuniyoshi wants to create robots that are friendly and quite literally soft, the machinery will be sheathed in thick padding. In contrast to a more traditional approach, Kuniyoshi wants to program his robot to make it learn by analyzing and fully exploiting its natural constraints. From the book Robo sapiens: Evolution of a New Species, page 56-57.
    Japan_JAP_rs_279_qxxs.jpg
  • Researcher John Kumph monitors the free-swimming robot pike he has designed. The robot is used in research into the swimming efficiency of fish. The robot is powered by motors, which pull on its skeleton, producing a realistic swimming stroke. It is steered by its fins. A human operator using a radio controls the battery-powered robot. Photographed at the Massachusetts Institute of Technology (MIT), Cambridge, MA,  USA.
    Usa_rs_534_xs.jpg
  • In a simulated bedroom complete with stuffed animals, tossed bedclothes, and a sleeping dummy victim, Robin R. Murphy of the University of South Florida keeps tabs on her marsupial robot; or, rather, robots. Developed to help search-and-rescue teams, the robots will work as a team. The larger "mother" is designed to roll into a disaster site. When it can go no farther, several "daughter" robots will emerge, marsupial fashion, from a cavity in its chest. The daughter robots will crawl on highly mobile tracks to look for survivors, feeding the mother robot images of what they see. Although the project is funded by the National Science Foundation and the Defense Advanced Research Projects Agency, Murphy's budget is hardly overwhelming. From the book Robo sapiens: Evolution of a New Species, page 154-155.
    USA_rs_460_qxxs.jpg
  • A "smart" pallet that can move in any direction, OmniMate was designed by Johann Borenstein, a research scientists at the University of Michigan. Like the HelpMate hospital delivery robot, OmniMate sits on robotic platforms called LabMates. Although earlier robot pallets had to move along cables buried in the floor, OmniMate can track its own location by measuring its movements precisely. Borenstein is in the process of putting his robot on the market. At the University of Michigan at Ann Arbor. From the book Robo sapiens: Evolution of a New Species, page 189.
    USA_rs_486_qxxs.jpg
  • Looking at Cog's still unfinished head, MIT neuroscientist Brian Scassellati ponders where he should mount the microphones that will enable the robot to hear. As important as controlling how the robot responds to people, he believes, is having some control over how people respond to the robot. The project does not have the resources to create a mock human being. MIT, Cambridge, MA. From the book Robo sapiens: Evolution of a New Species, page 65.
    USA_rs_455_qxxs.jpg
  • Virtual reality in undersea exploration: bench testing of an undersea tele-robotic robot arm, being developed for the U.S. Navy by the Centre for Engineering Design at the University of Utah, Salt Lake City. The functions of this robot are the performance of complex underwater tasks by remote manipulation from the surface. Underwater video cameras & other imaging systems relay information to a computer that produces a 3-D virtual image of the seabed. The operator is linked to this world through a headset equipped with 3-D goggles, & spatial sensor, and data gloves or other clothing that relay precision movements back through the computer to tools on the robot's limbs. (1990)
    USA_SCI_VR_40_xs.jpg
  • Virtual reality in undersea exploration: bench testing of an undersea tele-robotic robot arm, being developed for the U.S. Navy by the Center for Engineering Design at the University of Utah, Salt Lake City. The functions of this robot are the performance of complex underwater tasks by remote manipulation from the surface. Underwater video cameras & other imaging systems relay information to a computer that produces a 3-D virtual image of the seabed. The operator is linked to this world through a headset equipped with 3-D goggles, & spatial sensor, and data gloves or other clothing that relay precision movements back through the computer to tools on the robot's limbs. (1990)
    USA_SCI_VR_39_xs.jpg
  • Entertainer android robot. View of SARCOS, an android (human-like) entertainment robot, posing as if about to contemplate his next brush stroke on a life-like robot mask. SARCOS was developed at SARCOS Research Corporation in Salt Lake City, Utah, USA. Photo-Illustration. Robo sapiens Project.
    Usa_rs_448_120_xs.jpg
  • Walking robot. Blur-flash image of Pinky, a walking robot prototype, being physically supported by researcher Dan Paluska at the Leg Lab. at MIT (Massachusetts Institute of Technology). Pinky is a next generation walking robot that, unlike previous generations, can walk untethered and unsupported at normal human pace. Pinky was built to help understand the dynamics of the human stride. Photographed in Cambridge, USA
    Usa_rs_10_xs.jpg
  • First generation face robot from the Hara-Kobayashi Lab in Tokyo. Lit from behind to reveal the machinery beneath the skin. The machinery will change the contours of the robot's skin to create facial expressions. It does this by using electric actuators, which change their shape when an electric current is passed through them. The devices will return to their original shape when the current stops. This robot face was developed at the Laboratory of Fumio Hara and Hiroshi Kobayashi at the Science University, Tokyo, Japan.
    Japan_Jap_rs_2A_120_xs.jpg
  • First generation AIBO robot pet. Although they say it is only a robotic pet, the Nozue family in Yokohama acts like it is a member of the family. This is especially true of Mr. Nozue. During our two-hour Sunday morning visit, the family began by explaining that they had bought the Aibo through a nationwide lottery draw. They had wanted a real dog but their apartment building rules do not allow real pets so Mr. Nozue accessed the Sony site from work and applied for the lottery. His wife, Yoshini, says she never expected that they would actually buy the robotic pet because of the expense involved, they paid $2,500. AIBO is Japanese for buddy. Sony Corporation manufactures the robot. Photographed at the home of the Nozue family, Yokohama, Japan..
    Japan_Jap_rs_248_xs.jpg
  • Lit from within to reveal the machinery beneath its skin, this second-generation face robot from the Hara-Kobayashi laboratory at the Science University of Tokyo, Japan, has shape-memory actuators that move like muscles creating facial expressions beneath the robot's silicon skin. Made of metal strips that change their shape when an electric current passes through them, the actuators return to their original form when the current stops. The robot head is lit from within by a pencil light strobe cloaked in a yellow gel.From the book Robo sapiens: Evolution of a New Species, page 77.
    Japan_JAP_rs_1B_120_qxxs.jpg
  • Delicately handling a pretzel, the robotic hand developed at the Deutsches Zentrum für Luft und Raumfahrt (German Aerospace Center), in the countryside outside Munich, Germany, demonstrates the power of a control technique called force-feedback. To pick up an object, Max Fischer (in control room), one of the hand's developers, uses the data-glove to transmit the motion of his hand to the robot. If he moves a finger, the robot moves the corresponding finger. Early work on remote-controlled robots foundered when the machines unwittingly crushed the objects they were manipulating. From the book Robo sapiens: Evolution of a New Species, page 134.
    GER_rs_12B_qxxs.jpg
  • MODEL RELEASED. Entertainer android robot. View of Sarcos, an android (human-like) entertainment robot, playing seven-card-stud poker with a group of robot engineers. Sarcos was developed at SARCOS Research Corporation in Salt Lake City, Utah, USA. Robo sapiens Project.
    Usa_rszz_2c_120_xs.jpg
  • After the battle at San Francisco's Robot Wars, robot owners quickly repair what they can in the adjacent pit area . Full of machines being groomed for combat and surgically rescued after it, the pit is a sort of electronic fighter's dressing room and hospital emergency room. Video monitors above the pit give contestants a view of the action. At Robot Wars, a two-day festival of mechanical destruction at San Francisco's Fort Mason Center. California. From the book Robo sapiens: Evolution of a New Species, page 204 top.
    USA_rs_398_qxxs.jpg
  • The Sony humanoid robot prototype SDR-3X is held by professional Sumo wrestler Tamarashi ("Bullet-storm"). Sony Corporation announced the development of this small bipedal walking robot in November of 2000. By synchronizing the movements of 24 joints on its body, Sony says, the robot can perform basic movements such as walking and changing direction, rising from a seated position, balancing on one leg, kicking a ball, and dancing. Tokyo, Japan.
    Japan_Jap_rs_477_120_xs.jpg
  • Though tentative at first, brother and sister Taichi (3, at left) and Shino (5) warm up to the robot ASIMO (Advanced Step in Innovative Mobility) and agree to stand close enough to get a good look at the small stature robot after a performance at Suzuka City, Japan. Honda's walking robot, called ASIMO, is child-sized and has more maneuverability than it's predecessor, the Honda P3. Pictured here at Suzuka City, Japan, amusement complex..
    Japan_Jap_rs_360_xs.jpg
  • Professor Fumio Hara of the Hara and Kobayashi Lab at Science University of Tokyo with his lab's first-generation robot head, without its skin. This three-dimensional human-like animated pneumatic face robot can recognize human facial expressions as well as produce realistic facial expressions in real time. The animated face robot, covered in latex "skin" is equipped with a CCD camera in the left eye and is able to collect facial image data that is used for on-line recognition of human facial expressions. (Draped in white veil by photographer.)
    Japan_Jap_rs_199_xs.jpg
  • Trying to concentrate in a crowded, busy workspace, graduate student Harumi Ayai pats makeup onto the immobile features of a face robot in the Hara-Kobayashi Laboratory. This machine, the first face robot built in the lab, has a single camera in its left eye. Notwithstanding the relative simplicity of its design, the machine was able to smile when people approached it. Although rapidly superseded by later models, the lab went through three generations in a few years, the robot is still being studied. Japan. From the book Robo sapiens: Evolution of a New Species, page 78-79.
    Japan_JAP_rs_66_qxxs.jpg
  • Kismet is a complex autonomous, stationary robot developed by Dr. Cynthia Breazeal, at the time of this image a doctoral studies student at the MIT Artificial Intelligence Lab under the direction of Rod Brooks. Breazeal's immediate goal for Kismet is to replicate and possibly recognize human emotional states as exhibited in facial expressions. Kismet's eyelids, eyebrows, ears, mouth, and lips are all able to move independently to generate different expressions of emotional states. In this photograph, Cynthia poses with Kismet and "King Louie", a toy often used to stimulate the robot.
    Usa_rs_165_120_xs.jpg
  • Posing for a portrait at the Osaka  (Japan) University Department of Computer-Controlled Mechanical Systems, Junji Furusho (seated) and research associate Masamichi Sakaguchi show off Strut, their child-sized humanoid robot. At the time, the robot, a work in progress, could not walk at all?it could only stand. (It walked sometime later.) But simply getting the robot to stand properly was a major accomplishment. Like a human being, Strut has such complex, interreacting mechanical "musculature" that considerable processing power is needed simply to keep it erect. Japan. From the book Robo sapiens: Evolution of a New Species, page 49.
    Japan_JAP_rs_228_qxxs.jpg
  • Professor Fumio Hara and Assistant Professor Hiroshi Kobayashi's female face robot (second-generation) at Science University of Tokyo, Japan, has shape-memory electric actuators that move beneath the robot's silicon skin to change the face into different facial expressions much as muscles do in the human face. The actuators are very slow to return to their original state and remedying this is one of the research projects facing the Hara and Kobayashi Lab. The robot head is lit from within by a pencil light strobe cloaked in a yellow gel. It was photographed in the neon bill-boarded area of Shinjuku, a section of Tokyo, on a rainy evening at rush hour. Robo sapiens cover image. From the book Robo sapiens: Evolution of a New Species.
    Japan_JAP_rs_1_qxxs.jpg
  • Although MIT roboticist Rodney Brooks has worked in robotics since the late 1970s, he first attracted widespread attention when he began building robot insects, in the 1980s. (He was one of the subjects of Fast, Cheap, and Out of Control, a documentary film.) From the book Robo sapiens: Evolution of a New Species, page 61.
    USA_rs_456_qxxs.jpg
  • Head of the robot DART, the predecessor to Robonaut, a robotic astronaut developed by NASA  at the Johnson Space Center in Texas. In the first, developmental setup, the robot DART (Dexterous Anthropomorphic Robotic Testbed) had its head and hands joined to several long, immobile, pipelike cylinders. Later models are much more closely patterned on the human body. From the book Robo sapiens: Evolution of a New Species, page 131 bottom.
    USA_rs_364_qxxs.jpg
  • ASIMO (Advanced Step in Innovative Mobility), is the newest addition to the Honda Humanoid Robot family. It is on display daily at Suzuka City Circuit, where young and old converge to watch racing, ride amusement park rides, and also watch this child-sized robot introduced by a beauty queen walk, wave, and dance four times daily. The press literature for ASIMO states "By helping people, and becoming their partners, Honda robots are opening the door to the 21st Century." Honda R&D expects that "ASIMO will help improve life in human society.".
    Japan_Jap_rs_710_xs.jpg
  • Deftly opening a door, the Honda P3 walks its assigned path at the Honda Research Center, outside Tokyo, Japan. The product of a costly decade-long effort, the Honda robotic project was only released from its shroud of corporate secrecy in 1996. In a carefully choreographed performance, P3 walks a line, opens a door, turns a corner, and, after a safety chain is attached, climbs a flight of stairs. Despite its mechanical sophistication, it can't respond to its environment. If people were to step in its way, the burly robot would knock them down without noticing them. Ultimately, of course, Honda researchers hope to change that. But, in what seems an attempt to hedge the company's bet, P3 senior engineer Masato Hirose is also working on sending the robot to places where it cannot possibly injure anyone. From the book Robo sapiens: Evolution of a New Species, page 42.
    Japan_JAP_rs_16_qxxs.jpg
  • Leaning back in his chair, graduate student Jerry Pratt controls Spring Flamingo, a walking robot at the MIT Leg Lab in Cambridge, MA. A branch of MIT's renowned Artificial Intelligence Lab, the Leg Lab is home to researchers whose subjects run the gamut from improved artificial legs to robots that help scientists understand the complex dynamics of the human stride. Tethered to a slightly counterweighted boom that rotates around a pivot, the robot always walks in a circle in the lab.From the book Robo sapiens: Evolution of a New Species, page 8-9..
    USA_rs_12B_120_qxxs.jpg
  • Industrial-robot designer Norio Kodaira of Mitsubishi smiles proudly behind his Melfa EN, a robot arm that moves with incredible speed and dexterity to assemble pieces, drill holes, make chips, or just about any repetitive task that needs to be done quickly and precisely. Like many Japanese roboticists, Kodaira was inspired as a child by Tetsuwan Atomu (Astro Boy), a popular Japanese cartoon about a futuristic robot boy who helps human beings (a 15-centimeter Astro Boy action figure). Astro Boy, drawn in the 1950's, will soon be the star of a major motion picture. In the story line, his birthdate is in April of 2003. Japan. From the book Robo sapiens: Evolution of a New Species, page 196.
    Japan_JAP_rs_65_qxxs.jpg
  • Sleek and elegant, the head of this unfinished robot was constructed by the Symbiotic Intelligence Group of the Kitano Symbiotic Systems Project. It is funded by an ERATO grant from the Japan Science and Technology Corporation, a branch of the Science and Technology Agency of the Japanese government. SIG, as this robot is named, has a white outside shell designed by a project artist, group leader Hiroaki Kitano is a firm believer in the importance of aesthetics. Tokyo, Japan. From the book Robo sapiens: Evolution of a New Species, page 80-81.
    Japan_JAP_rs_241_qxxs.jpg
  • Kismet is a complex autonomous robot developed by Dr. Cynthia Breazeal, at the time of this image a doctoral studies student at the MIT Artificial Intelligence Lab under the direction of Rod Brooks. Breazeal's immediate goal for Kismet is to replicate and possibly recognize human emotional states as exhibited in facial expressions. Breazeal has located the most important variables in human facial expressions and has mechanically transferred these points of expression to a robotic face. Kismet's eyelids, eyebrows, ears, mouth, and lips are all able to move independently to generate different expressions of emotional states.
    Usa_rs_711_xs.jpg
  • Robot baby doll. Robot baby doll with part of its "skin" removed to show its inner workings. This toy, known as BIT (Baby IT), is a prototype of the My Real Baby interactive baby doll developed by IRobot Corporation and Hasbro Corporation. The BIT doll mimics the facial expression of a human baby by changing the contours on its lifelike rubber face. The BIT baby doll was developed by IS Robotics, Somerville, Massachusetts, USA. 
    Usa_rs_6a_120_xs.jpg
  • A protoype of the iRobot, a multi-purpose, web-controllable home robot built by the iRobot company. Following in the footsteps of other home robots like Sony's Aibo, iRobot Corporation of Somerville, Massachusetts has included more advanced features in the iRobot such as programmability, wireless Internet connectivity, and higher mobility. The robot is intended to bring tele-presence into the home with its cameras, microphones, mobility, Internet connection, and control-ability.
    Usa_rs_593_120_xs.jpg
  • Graduate student Dan Paluska adjusts mechanisms of the lower torso and extremity robot, called M2. The robot is funded by a DARPA (US Defense Advanced Research Projects Agency) program called Tactile Mobile Robotics. DARPA's goal is to replace soldiers and rescue workers in dangerous situations. MIT Leg Lab, Cambridge, MA.
    Usa_rs_591_120_xs.jpg
  • Anita Flynn with vintage robot prototype "Gnat" at the M.I.T. Insect Robot Lab in Cambridge, Massachusetts. Flynn was an Insect Lab scientist who liked to dream up possible jobs for tiny, cheap, throwaway robots.  She suggested that a gnat could crawl along an underground electrical cable until it finds a break, bridge the gap, and stay there as a permanent repair. Robo sapiens Project.
    Usa_rs_19_01_xs.jpg
  • Pinky (chaperoned by graduate student Dan Paluska) is the prototype of the next walking robot from the MIT Leg Lab in Cambridge, MA. Established in 1980 by Marc Raibert, the Leg Lab was home to the first robots that mimicked human walking?swinging like an inverted pendulum from step to step. Famously, Raibert even built a robot that could flip itself in an aerial somersault and land on its feet. From the book Robo sapiens: Evolution of a New Species, page 182.
    USA_rs_83_qxxs.jpg
  • Surrounded by his robot toys and sculptures, Clayton Bailey of Port Costa, California, is living proof that not everyone feels threatened by the prospect of being surrounded by mechanical human beings. In the studio behind his home, Bailey stands among the large robots he has sculpted since retiring as a professor of art from California State University, Hayward. He and his wife, Betty, have collected robot and space toys for the past 30 years. From the book Robo sapiens: Evolution of a New Species, page 230-231.
    USA_rs_3A_120_qxxs.jpg
  • By flexing his data-gloved hand, robotics specialist Fredrik L. Rehnmark controls the NASA robonaut as it reaches for a battery-operated power drill on a test platform. Black goggles on Rehnmark's head give him the view from the twin digital cameras mounted in the robot's shiny carapace. Next to Rehnmark, engineer Hal A. Aldridge tracks the robot's test results. In a cavernous adjacent room in the Johnson Space Center  in Texas is a life-sized mock-up of the robonaut's future home: the NASA space shuttle. From the book Robo sapiens: Evolution of a New Species, page 132-133.
    USA_rs_362_qxxs.jpg
  • Shot-putting Urbie over a two-meter chain-link fence, Alan DiPietro, a staff researcher at iRobot of Somerville, Mass., shows how soldiers might use this remotely operated robot in urban warfare. Intended for surveillance, Urbie is a low-profile, remotely operated machine that crawls over obstacles on bulldozer-like tracks, beaming images of what it sees to its operators. The robot is intended to be exceptionally durable, capable of flipping over and surviving shocks that would destroy most other robots. But the company still has a ways to go, one of Urbie's caterpillar tracks shattered when DiPietro threw it over the fence. From the book Robo sapiens: Evolution of a New Species, page 146.
    USA_rs_334_qxxs.jpg
  • Just below the surface of a reservoir outside Boston, MA,  robot Ariel, built by the Massachusetts firm iRobot, walks sideways like the crab it is patterned on. A machine with a serious purpose, it is designed to scuttle from the shore through the surf to search for mines on the ocean floor. Ariel was funded by the Defense Advanced Research Projects Agency and built by iRobot, a company founded by MIT robot guru Rodney Brooks. Inspired by research on crabs at Robert Full's lab at Berkeley, Ariel takes advantage of the animal's stability and improves on it. From the book Robo sapiens: Evolution of a New Species, page 84-85.
    USA_rs_306_qxxs.jpg
  • The M2 humanoid robot, built in the basement of the Massachusetts Institute of Technology's Leg Lab, took its first tentative steps in the year 2000. Dan Paluska, a mechanical engineering grad student, leads M2's hardware design and construction. The lower torso robot is funded by a DARPA (US Defense Advanced Research Projects Agency) program called Tactile Mobile Robotics. DARPA's goal is to replace soldiers and rescue workers in dangerous situations. Massachusetts Institute of Technology (MIT), Cambridge, MA USA.
    Usa_rs_590_120_xs.jpg
  • Precision robot arms maneuver microsurgical instruments through centimeter-long holes into the heart of a cadaver in a demonstration of minimally invasive surgery at Intuitive Surgical of Mountain View, California. The whole ensemble: console, tools, and operating table, was developed by the Stanford Research Institute in Menlo Park, CA, a nonprofit R&D center created by Stanford University. The system was commercialized by Intuitive Surgical of Mountain View, Calif.; it now costs about $1 million. From the book Robo sapiens: Evolution of a New Species, page 6-7. Intuitive Surgical Incorporated, based in California, USA, designed Da Vinci.
    Usa_rs_422_120_xs.jpg
  • MODEL RELEASED. Kismet robot interacting with a mirror held by researcher Cynthia Breazeal. Kismet is a robot that responds with facial expressions to her actions. It has been developed for the study of action recognition and learning, particularly in children. Kismet has several moods, which it displays as expressions on its face. It responds to visual stimuli like a baby. When there are no stimuli, it shows a sad expression. When paid attention to, as here, Kismet looks interested. Like a child, Kismet responds best to bright colours and moderate movements. Photographed at Massachusetts Institute of Technology (MIT), Cambridge, USA.
    Usa_rs_565_xxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_42_nxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_38_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_37_nxs.jpg
  • Being carried along the edge of a reservoir outside Boston, MA by iRobot technician Ed Williams, Ariel the crab-robot is able to move with a slow, steady, sideways gait. A machine with a serious purpose, it is designed to scuttle from the shore through the surf to search for mines on the ocean floor. Ariel was funded by the Defense Advanced Research Projects Agency and built by iRobot, a company founded by MIT robot guru Rodney Brooks. From the book Robo sapiens: Evolution of a New Species, page 101.
    USA_rs_338_qxxs.jpg
  • Surrounded by the robots used in his Georgia Institute of Technology laboratory, computer scientist Ronald C. Arkin specializes in behavior-based robots, he's written a textbook with that name. Concerned more with software than hardware, he buys robots from companies and modifies their behavior, increasing their capacities. But outside such places, what Arkin calls "the physical situatedness" of the robot is "absolutely crucial" to its ability to act and react appropriately. Like many of his colleagues, he has been inspired by the way insects and other nonhuman life forms have adapted to their environment. From the book Robo sapiens: Evolution of a New Species, page 153.
    USA_rs_331_qxxs.jpg
  • Wielding a paint brush, a robot touches up its human master in this photo-illustration at the SARCOS robot company in Salt Lake City, UT. From the book Robo sapiens: Evolution of a New Species, page 20-21.
    USA_rs_142_120_qxxs.jpg
  • When a terrifying earthquake leveled part of Turkey in the fall of 1999, rescuers had trouble pulling victims from the rubble because it was too risky to crawl through the unstable ruins. As a result, some people died before they could be rescued. Shigeo Hirose of the Tokyo Technical Institute thinks he may have the solution: Blue Dragon (Souryu in Japanese). A light, triple-jointed robot with a digital camera in its nose, Blue Dragon could crawl through an earthquake-damaged building in search of survivors. Wriggling over a pile of shattered concrete on a construction site at the institute's campus, the battery-operated robot fell over several times, but righted itself quickly and continued slithering through the pile of stone. Japan. From the book Robo sapiens: Evolution of a New Species, page 148-149.
    Japan_JAP_rs_50_qxxs.jpg
  • "Squirt" is a robot that hides in the dark, M.I.T., Insect Robot Lab, Cambridge, MA
    Usa_sci_ir_25_nxs.jpg
  • Chris Foley seen here with, Herbert, a robot that picks up empty soda cans, Insect Robot Lab, M.I.T., Cambridge, MA
    Usa_sci_ir_24_nxs.jpg
  • Cynthia Ferrell (Breazeal) seemingly gives life to the robot Genghis at the M.I.T. Insect Robot Lab in Cambridge, Massachusetts. Massachusetts Institute of Technology, Cambridge, MA USA.
    Usa_rs_712_xs.jpg
  • Robonaut, with an acrylic head, holds a drill with socket attachment at the Johnson Space Center, Houston. That NASA's teleoperated humanoid-type robot, called Robonaut, has no legs is by design, because in space, says project leader Robert Ambrose, an astronaut's legs can be a big impediment to fulfilling the mission of a spacewalk. The latest version of Robonaut has two arms, a Kevlar and nylon suit, updated stereo eyes, and is getting heat sensing capability. Possibly the most significant change is the move from total teleoperation to some level of autonomy.
    Usa_rs_358_xs.jpg
  • Ariel the crab-robot moves with a slow, steady, sideways gait. A machine with a serious purpose, it is designed to scuttle from the shore through the surf to search for mines on the ocean floor. Ariel was funded by the Defense Advanced Research Projects Agency and built by iRobot, a company founded by MIT robot guru Rodney Brooks. Robo sapiens Project.
    Usa_rs_337_nxs.jpg
  • Roboticist Rodney Brooks of the MIT Artificial Intelligence Laboratory shares a slinky moment with his creation, Cog (short for cognitive), the robot he has been developing since 1993. Brooks is less concerned with making it mobile than with creating a system that will let the robot reliably tell the difference between static and social objects; for instance a rock and a person. In the resolution of such apparently simple distinctions, Brooks suggests, is a key to understanding at least one type of human learning. Cambridge, MA. From the book Robo sapiens: Evolution of a New Species, page 62-63.
    USA_rs_5A_120_qxxs.jpg
  • Rather than building an exact metal and plastic copy of an insect's bones and muscles, Stanford engineer Mark Cutkosky and his students Sean Bailey and Jorge Cham (Cutkosky at left) stripped a cockroach to its essence. The Mini-sprawl has padded feet, with springy couplings and pneumatic pistons that yank the legs up and down. Like a real roach, the robot skitters forward as each set of legs touches the surface. The next step: creating a robot that can turn and vary its speed. Stanford, CA. From the book Robo sapiens: Evolution of a New Species, page 99 top.
    USA_rs_473_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_44_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_43_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_41_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_40_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_39_qxxs.jpg
  • Eyes sweeping the room with what seems to be hopeful curiosity, Kismet the robot sits like an animated bust on Cynthia Breazeal's desk at MIT in Cambridge, MA. When it spots visitors, the robot's expression changes to an almost uncannily convincing expression of interest and delight. From the book Robo sapiens: Evolution of a New Species. One of a series of Kismet images.
    USA_rs_36_qxxs.jpg
  • Sidling along the edge of a reservoir outside Boston, MA., Ariel the crab-robot moves with a slow, steady, sideways gait. A machine with a serious purpose, it is designed to scuttle from the shore through the surf to search for mines on the ocean floor. Ariel was funded by the Defense Advanced Research Projects Agency and built by iRobot, a company founded by MIT robot guru Rodney Brooks. Inspired by research on crabs at Robert Full's lab at Berkeley, Ariel takes advantage of the animal's stability and improves on it. But despite its abilities, the technician in charge of the machine, Ed Williams, supervises Ariel's excursions with great anxiety. From the book Robo sapiens: Evolution of a New Species, page 100.
    USA_rs_307_qxxs.jpg
  • Wedged into her small, cluttered workspace in the MIT Artificial Intelligence Laboratory in Cambridge, MA., researcher Cynthia Breazeal holds a mirror to Kismet, the robot head she has been working on for two years. The cameras behind Kismet's big blue eyes send data to its computer, which has software allowing the robot to detect people and bright toys visually. In addition, the software recognizes people by vocal affect. Then, following its programming, it reacts, twisting its features in a comically exaggerated display of emotion. From the book Robo sapiens: Evolution of a New Species, page 66.
    USA_rs_124_qxxs.jpg
  • Intended to provide 360-degree images of its surroundings, Omniclops, the robot "omnicamera," is being developed by Hagen Schempf (holding Omniclops) of the Robotics Institute at Carnegie Mellon University. Schempf is now with the Robotics Engineering Consortium in Pittsburgh, PA. Founded in 1994 with seed money from NASA, the consortium is located off the Carnegie Mellon campus and operates with great autonomy in this enormous facility. Behind Schempf on the main floor are autonomous forklifts; out of sight, other rooms are chockablock with robotic harvesters and mine diggers. The forklift, which can understand commands like "unload the truck in bay 4," should be deployed in Ford factories by the end of 2000. From the book Robo sapiens: Evolution of a New Species, page 144.
    USA_rs_102_qxxs.jpg
  • In Suzuka City, Japan, ASIMO, (Advanced Step in Innovative Mobility), a humanoid robot designed by Honda stands with the Suzuka Circuit Queen, and waves to the audience. Honda's walking robot, is child-sized and has more maneuverability than it's predecessor, the Honda P3. Unlike the P3, which couldn't be stopped once it began it's programmed routine, ASIMO can be controlled by either joystick or computer program. Pictured here at Suzuka City (a race track and amusement park), Japan.
    Japan_Jap_rs_354_xs.jpg
  • After he removes its skin, Fumio Hara gets the once-over from a face robot in the lab he co-directs with Hiroshi Kobayashi at the Science University of Tokyo, Japan. The first of several face robots made in his lab, it has a CCD camera in its left eye that sends images to neural-network software that recognizes faces and their expressions. Calling upon its repertoire of programmed reactions, it activates the motors and pulleys beneath its flexible skin to produce facial expressions of its own. The project is relatively unusual in its focus, many researchers believe that making robots walk and manipulate objects is so difficult that facial expressions are not yet worth working on. Hara disagrees, arguing that robots with animated faces will communicate with humans much more easily. From the book Robo sapiens: Evolution of a New Species, page 74-75.
    Japan_JAP_rs_4_qxxs.jpg
  • The novelty of owning Japan's first robot dog is not enough to keep Mitsuhiko Nozue's son Masahiko from switching his attention to a Pokemon video game. When abandoned by its owner, AIBO, Sony's new, limited-edition mechanical pet, plays with the ball by itself, delighting Mitsuhiko. The man runs for the 150-page manual that came with the robot pet when AIBO displays any new trick, sometimes leaving Mitsuhiko scratching his head; a puzzlement all too familiar from other encounters with digital gizmos. The latest word is that the Nozue family has named their AIBO Narubo. Yokohama, Japan . From the book Robo sapiens: Evolution of a New Species, page 226.
    Japan_JAP_rs_252_qxxs.jpg
  • Surrounded by his plans and sketches, designer Tatsuya Matsui (seated) contemplates the next phase in the evolution of SIG, the robot under development by Hiroaki Kitano (standing). Kitano, a senior researcher at Sony Computer Science Laboratories, Inc. and director of this government-funded project, wants to endow SIG with sufficient eyesight, hearing, and processing power to follow instructions given by several people in a crowd. The goal is ambitious, but Kitano is well-placed to achieve it. In 1997, he created the now-famous RoboCup, in which robot teams from around the world meet every year to play soccer in an indoor arena. Japan. From the book Robo sapiens: Evolution of a New Species, page 83.
    Japan_JAP_rs_242_qxxs.jpg
  • Lurching from side to side like an infant figuring out how to walk, the biped-locomotion robot in the Fukuda Lab at Nagoya University tentatively steps forward under the parental supervision of graduate student Kazuo Takahashi. Designed by Toshio Fukuda, a professor of mechanical engineering, the robot is intended to test what Fukuda calls "hierarchical evolutionary algorithms" software that repeats an action, learning from its mistakes until it approaches perfection. Japan. From the book Robo sapiens: Evolution of a New Species, page 46-47.
    Japan_JAP_rs_20_qxxs.jpg
  • Kurt I, a 32-cm-long robot, crawls through a simulated sewer network on the grounds of the Gesellschaft für Mathematik und Datenverabeitung-Forschungs-zentrum Informationstechnik GmbH (GMD), a government-owned R&D center outside Bonn, Germany. Every ten years, Germany's 400,000 kilometers of sewers must be inspected, at a cost of $9 per meter. Today, vehicles tethered to long data cables explore remote parts of the system. Because the cables restrict the vehicle's mobility and range, GMD engineers have built Kurt I, which crawls through sewers itself. To pilot itself, the robot?or, rather, its successor model, Kurt II?will use two low-power lasers to beam a checkerboardlike grid into its path. When the gridlines curve, indicating a bend or intersection in the pipe ahead, Kurt II will match the curves against a digital map in its "brain" and pilot itself to its destination. From the book Robo sapiens: Evolution of a New Species, page 194
    GER_rs_6_qxxs.jpg
  • Maja Mataric works on her robot at the  M.I.T., Insect Robot Lab,  Cambridge, MA
    Usa_sci_ir_33_nxs.jpg
  • Chris Foley seen here with , Eddie, a wall climbing robot, M.I.T., Insect Robot Lab, Cambridge, MA
    Usa_sci_ir_26_nxs.jpg
  • An animated robot chameleon is part of an exhibit called the Robot Zoo.
    Usa_rs_401_xs.jpg
  • An animated robot fly with 10 foot wingspan is part of an exhibit called the Robot Zoo.
    Usa_rs_316_xs.jpg
  • Utilizing the research results of University of California biologist Robert Full, Martin Buehler of McGill University and Daniel E. Koditschek of the University of Michigan seized upon when they created RHex (controlled by graduate student Uluç Saranli). Tested in a laboratory (at the University of Michigan at Ann Arbor) dominated by an antique poster for Isaac Asimov's book, I, Robot, RHex could become a "companion robot," Buehler says, following its owner around like a friendly mechanical shadow. From the book Robo sapiens: Evolution of a New Species, page 97.
    USA_rs_470_qxxs.jpg
  • Not long before going to Antarctica, William L. "Red" Whittaker took a rare moment off from his busy schedule to accompany Nomad, his meteorite-hunting robot, on a practice run. The robot spent Antarctica's summer of 2000 on the ice, hunting for meteorites. With its onboard instruments, Nomad found and classified five. It was the first time that a machine autonomously made a scientific discovery. Pittsburgh, PA. From the book Robo sapiens: Evolution of a New Species, page 138-139.
    USA_rs_109_qxxs.jpg
  • At the time, the robot Strut, a work in progress, could not walk at all, it could only stand. (It walked sometime later.) But simply getting the robot to stand properly was a major accomplishment. Like a human being, Strut has such complex, interreacting mechanical "musculature" that considerable processing power is needed simply to keep it erect. Osaka (Japan) University Department of Computer-Controlled Mechanical Systems, built by Junji Furusho and research associate Masamichi Sakaguchi. From the book Robo sapiens: Evolution of a New Species, page 48.
    Japan_JAP_rs_267_qxxs.jpg
  • A work in progress, this still-unnamed face robot can open its eyes and smile. In the future, says its designer, Hidetoshi Akasawa, a mechanical engineering student working on a master's at the Science University of Tokyo, Japan,  it will be able to recognize and react to human facial expressions. This third-generation robot will greet smiles with smiles, frowns with frowns, mixing and matching six basic emotions in a real-time interaction that Hara calls "active human interface." From the book Robo sapiens: Evolution of a New Species, page 72.
    Japan_JAP_rs_262_qxxs.jpg
  • Dan Paluska, the mechanical engineering grad student leading M2's hardware design and construction, is seen here in a double exposure that melds him with his machine for a photo illustration. The lower torso and extremity robot, called M2, took its first tentative steps last year here in the basement of MIT's Leg Laboratory. Established in 1980 by Marc Raibert, the Leg Lab was home to the first robots that mimicked human walking; swinging like an inverted pendulum from step to step. Similar to image published on the cover of Wired Magazine, September 2000. MIT Leg Lab, Cambridge, MA.
    Usa_rszz_723_120_xs.jpg
  • Dan Paluska, the mechanical engineering grad student leading M2's hardware design and construction, is seen here in a double exposure that melds him with his machine for a photo illustration. The lower torso and extremity robot, called M2, took its first tentative steps last year here in the basement of MIT's Leg Laboratory. Established in 1980 by Marc Raibert, the Leg Lab was home to the first robots that mimicked human walking; swinging like an inverted pendulum from step to step. Similar to image published on the cover of Wired Magazine, September 2000. MIT Leg Lab, Cambridge, MA.
    Usa_rszz_703_120_xs.jpg
  • In the East Bay suburb of Walnut Creek, near San Francisco, Will Wright and family collectively in their garage preparing their creation for "Robot Wars"(daughter Cassidy 11, nephew Patrick 14, and Will). Later that week, in a battle pit ringed by six-foot sheets of bulletproof glass and a sellout crowd, radio-controlled gladiators battle their robots to the mechanical death. Will Wright developed the Sims software games.
    Usa_rs_713_xs.jpg
  • Baby It's skin partially removed to reveal its inner workings, this prototype robot baby can mimic the facial expressions of a human infant by changing the contours of its lifelike rubber face. Called BIT, for Baby IT, the mechanical tot is yet more proof that much robotic research will see its first commercial application in the toy and entertainment industry. My Real Baby, the market version of BIT, is scheduled to debut in US stores in late 2000; it is a collaboration between Hasbro, the US toy giant, and iRobot, a small company started by MIT researcher Rodney Brooks.  Somerville, MA. From the book Robo sapiens: Evolution of a New Species, page 229.
    USA_rs_72_qxxs.jpg
  • Like a dissected mechanical insect, the hand-sized walking robot Unibug 3.2 (left) reveals its fifty-component construction to the camera's gaze. Designed by Los Alamos , New Mexico, researcher Mark Tilden, Unibug uses simple analog circuits, not the digital electronics that are in most robots, to poke its way around an amazing variety of obstacles. Digital machines must be programmed to account for every variation in their environment, Tilden argues, whereas analog machines can minimally compensate for new and different conditions. From the book Robo sapiens: Evolution of a New Species, page 116.
    USA_rs_487_120_qxxs.jpg
  • Deep in the basement of the Carnegie Mellon Robotics Institute, Omead Amidi adjusts the wing of the robot helicopter he is designing with Takeo Kanade, a Carnegie Mellon researcher who specializes in robotic vision. Several smaller versions of the project sit in his workshop. Pittsburgh, PA. From the book Robo sapiens: Evolution of a New Species, page 160-161.
    USA_rs_101_qxxs.jpg
  • Utterly ignoring the safety chain attached to the base of its "neck," the Honda P3 confidently walks down a flight of steps in the company lab. More than a decade ago, at the beginning of the Honda project, the research team concluded that their robot would have to be able to walk, rather than simply roll on wheels. Wheeled robots, they decided, just couldn't function in a contemporary home full of stairs, toy-strewn floors, thick pile rugs, and other obstacles. Today P3 can walk with impressive smoothness. The only real sign of its robotic nature is the way it begins to walk with a little knee-dip, to compensate for the absence of a pelvis. Japan. From the book Robo sapiens: Evolution of a New Species, page 44.
    Japan_JAP_rs_44_qxxs.jpg
Next

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries