Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 13 images found }

Loading ()...

  • Monarch butterflies clustered on the side of a tree at Site Alpha, near Rosario, Mexico.
    MEX_053_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Main complex. (1986) 3. 2 km (2 mile) long linear accelerator at the Stanford Linear Accel- erator Center (SLAC), California. The end at which the electrons start their journey is in the distance; the experimental areas where the accelerated electrons are smashed into targets, or used for further acceleration in electron-positron Colliders, is in the group of buildings seen here. The giant red- roofed building in the experimental area is End Station A, where the first evidence of quarks was discovered in 1968-72. .Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989.
    USA_SCI_PHY_37_xs.jpg
  • Physics: Pat Burchat, with a computer simulation reflected in her glasses at the Stanford Linear Accelerator Center (SLAC) Large Detector. Computer Simulated Event. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. MODEL RELEASED [1988]
    USA_SCI_PHY_09_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Control Room [1988]. Instrumentation displays inside the control room of the Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989.
    USA_SCI_PHY_29_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Control Room..Instrumentation displays inside the control room of the Stanford Linear Collider (SLC) experiment, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_22_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC) Martin Perl, Physicist at SLAC..Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. MODEL RELEASED [1988]
    USA_SCI_PHY_10_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC) Helen Quinn, theoretician. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. MODEL RELEASED [1986].
    USA_SCI_PHY_05_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Electronics Trailer. J. Chapman checks myriad connections..Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_19_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Rafe Schindler and Iris Abt with detector insert. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_18_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Large Detector construction: sorting through the tens of thousands of fittings. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_15_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Large Detector Control Room. Instrumentation displays inside the control room of the Stanford Linear Collider (SLC) experiment, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_26_xs.jpg
  • Sitarani Tyaagi, an ascetic Hindu priest, with his typical day's worth of food at an ashram in Ujjain, India. (From the book What I Eat; Around the World in 80  Diets.)  The caloric value of his typical day's worth of food in the month of April was 1000 kcals. He is 70 years of age; 5 feet, 6 inches tall; and 103 pounds. Sitarani Tyaagi is one of thousands of ascetic Hindu priests?called Sadhus?that walk the country of India and receive food from observant Hindus. Generally, he eats one meal per day and has water for the other two meals. He has a small pot that he carries with him for water. Offer him more food than a plateful, and he will kindly say, "no thanks."  MODEL RELEASED.
    IND_040420_340_xxw.jpg
  • A fish vendor in the market area near the train station of Kodaira City, outside Tokyo shows the "wing span" of a flying fish. The fish shop is one of Sayo Ukita's stops on her daily shopping bike ride from her home. As might be expected in an island nation, Japanese families eat a wide variety of seafood: fish, shellfish, and seaweed of all kinds. In any given week, the Ukitas will eat at least a dozen different kinds of fish and shellfish, and three varieties of seaweed. (Supporting image from the project Hungry Planet: What the World Eats) The Ukita family of Kodaira City, Japan, is one of the thirty families featured, with a weeks' worth of food, in the book Hungry Planet: What the World Eats.
    Japan_JAP01_0022_xf1bs.jpg

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries