Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 73 images found }

Loading ()...

  • Proton decay experiment to determine the ultimate stability of matter..Proton decay. A technician [works with] a 20" (50cm) photomultiplier tube used in the search for proton decay. Hundreds of such tubes line a tank containing 9000 tons of water some 1000 meters underground in a zinc mine in Japan. Tokyo University's Kamiokande experiment was designed to look for decaying protons. If a proton decays, the charged particles it generates move through the water faster than light, and so generate blue 'Cerenkov' radiation. It is this that the photomultipliers detect. Computers then decide whether the event was a decay, or a collision with a solar neutrino. Japan. (1985)
    Japan_JAP_SCI_PHY_02_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..View of the entrance of Tokyo University's Proton Decay Experiment. 1,000 50-centimeter photomultiplier tubes line the 12-meter deep tank of water form the experiment. The water contains enough protons to provide an average of one decay event per year, an event that may be detected by these tubes as the particles from the decay cause a visible light phenomenon known as Cerenkov radiation. The experiment is taking place 914 meters underground in a zinc mine below Mt. Ikenoyama to minimize the effects of cosmic rays. Japan. (1985).
    Japan_JAP_SCI_PHY_04_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Physics: Proton Decay. Ohio, Morton Salt Mine (1985). Proton decay detector located 600 meters underground in the Morton salt mine near Cleveland, Ohio.which consists of a massive tank containing 21 cubic meters of ultra pure water, its walls lined with photomultiplier tubes, which detect faint flashes of Cerenkov light emitted by the passage of charged particles
    USA_SCI_PHY_36_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Physics: Proton Decay. Ohio, Morton Salt Mine (1985). Proton decay detector located 600 meters underground in the Morton salt mine near Cleveland, Ohio.which consists of a massive tank containing 21 cubic meters of ultra pure water, its walls lined with photomultiplier tubes, which detect faint flashes of Cerenkov light emitted by the passage of charged particles.
    USA_SCI_PHY_35_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. Dr. Masatoshi Koshiba, director of Tokyo University's Proton Decay Experiment. Dr. Koshiba is seen holding one of the 1,000 50 centimeter photomultiplier tubes that line the 12-meter deep tank of water that forms the experiment. The water contains enough protons to provide an average of one decay event per year, an event that may be detected by these tubes as the particles from the decay cause a visible light phenomenon known as Cerenkov radiation. The experiment is taking place 914 meters underground in a zinc mine below Mt. Ikenoyama to minimize the effects of cosmic rays..Japan. MODEL RELEASED (1985)
    Japan_JAP_SCI_PHY_03_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. View of the NUSEX (Nucleon Stability Experiment) proton decay detector located in a garage area off the Mont Blanc tunnel under some 5000 meters of rock which shields it from most cosmic radiation. (1985)
    FRA_SCI_PHY_02_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. .Dr. Oscar Saavedra outside the door to the tunnel experiment with traffic streaming by. Oscar Saavedra, experimenter in the Mont Blanc Proton Decay group. The experiment consists of a 150-ton cube of iron sheets, interleaved with Geiger counter tubes. The cube has to be large enough to provide a mass of protons that will bring the probability of a decay event occurring within practical bounds, made difficult by the half life of the proton being 10 to the power 34 years.  (1985).
    FRA_SCI_PHY_01_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. View of the entrance to the French side of the Mont Blanc tunnel, inside which is located the NUSEX proton decay experiment. The tunnel runs between France & Italy under Mont Blanc. NUSEX is located several kilometers inside the tunnel, on the French side of the border, in one of the garage areas dug out of the rock at regular intervals along the tunnel. .View of the NUSEX (Nucleon Stability Experiment) proton decay detector located in a garage area off the Mont Blanc tunnel under some 5000 meters of rock which shields it from most cosmic radiation. (1985)
    FRA_SCI_PHY_04_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..The iron stack, which forms the proton decay experiment at Frejus, France. The stack consists of iron bars interspersed with Geiger tubes, and is designed to provide enough protons to bring the probability of observing a decay event into realistic proportions, made difficult by the half- life of the proton being ten to the power 34 years. (1985)
    FRA_SCI_PHY_03_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..The tubular iron detector of the Kolar proton decay experiment, 6,000 feet underground in a gold mine in India. The experiment consists of 150 tons of iron tube arranged in a cubic layout. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half-life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic.   India. (1985)
    IND_SCI_PHY_04_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Mine workers passing the entrance to the Kolar proton decay experiment, 6,000 feet underground in a gold mine in India. The experiment consists of 150 tons of iron tube arranged in a cubic layout. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half-life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic. India. (1985)
    IND_SCI_PHY_03_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. A technician checking Perspex plates at the IMB Proton Decay Experiment site. The IMB Project is named after the sponsoring institutions, University of California at Irvine, University of Michigan and the Brookhaven National Laboratory. The experiment consists of a 60-foot deep tank filled with 8,000 tons of purified water, dug into the Morton-Thiokol salt mine at Painesville, Ohio, some 2,000 feet underground. The proton decay event will be detected by an array of 2,048 photomultipliers that line the tank. Proton decay is essential in most Grand Unified Theories of the fundamental forces, but to date no firm evidence of the decay has been found.
    USA_SCI_PHY_34_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. Dr. Narasimham. Gold mine at Kolar, site of India's proton decay experiment. The experiment consists of 150 tons of iron tube arranged in a cubic layout 6000 feet (1828 meters) below ground. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half- life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic.  India. MODEL RELEASED (1985)
    IND_SCI_PHY_02_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. .Proton decay. A technician holding a 20" (50cm) photomultiplier tube used in the search for proton decay. Hundreds of such tubes line a tank containing 9000 tons of water some 1000 meters underground in a zinc mine in Japan. Japan. (1985)
    Japan_JAP_SCI_PHY_01_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter..Entrance of the gold mine at Kolar, site of India's proton decay experiment. The experiment consists of 150 tons of iron tube arranged in a cubic layout 6000 feet (1828 meters) below ground. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half- life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic. India. (1985)
    IND_SCI_PHY_05_xs.jpg
  • Proton decay experiment to determine the ultimate stability of matter. Dr. Narasimham. Gold mine at Kolar, site of India's proton decay experiment. The experiment consists of 150 tons of iron tube arranged in a cubic layout 6000 feet (1828 meters) below ground. Each tube is converted to act like a large Geiger counter, and is designed to detect the products from the decay of a proton. The half- life of the proton is estimated at 10 to the power 34 years, so the experiment has to contain as many protons as possible for the probability of an event occurring to be realistic. India. MODEL RELEASED (1985)
    IND_SCI_PHY_01_xs.jpg
  • Physics: Geneva, Switzerland/CERN: L-3 Experiment. Computer simulation of particle physics collision. CERN is the European centre for particle physics near Geneva. L3 is one of 4 giant particle detectors at the LEP Collider. LEP collides electrons & positrons accelerated to an energy of 50 GeV in a circular tunnel 100m underground & 27km in circumference. L3 is a cylindrical assembly of many types of apparatus - hadron & electromagnetic calorimeters, drift chambers, & a time projection chamber - which fit together like layers of an onion around the point where the particles collide. L3 is a collaboration of 460 physicists from institutions in 13 countries.
    SWI_SCI_PHY_12_xs.jpg
  • Star Wars research: neutral particle beam accelerator at Los Alamos National Laboratory. The accelerator was part of the Reagan White House project for a space-based accelerator that could produce a high-energy, uncharged particle beam that might examine, disarm, & even destroy distant objects (such as ballistic missiles), as part of America's Strategic Defense Initiative (SDI) - the "Star Wars" program. Neutral (uncharged) particle beams are necessary because the influence of the Earth's magnetic field on electrically charged particles would cause them to travel in spirals. Los Alamos, New Mexico. (1988)
    USA_SCI_NUKE_50_xs.jpg
  • Star Wars research: neutral particle beam accelerator at Los Alamos National Laboratory. The accelerator was part of the Reagan White House project for a space-based accelerator that could produce a high-energy, uncharged particle beam that might examine, disarm, & even destroy distant objects (such as ballistic missiles), as part of America's Strategic Defense Initiative (SDI) - the "Star Wars" program. Neutral (uncharged) particle beams are necessary because the influence of the Earth's magnetic field on electrically charged particles would cause them to travel in spirals. Los Alamos, New Mexico. (1988)
    USA_SCI_NUKE_49_xs.jpg
  • Burton Richter (born 1931), American physicist and director of the Stanford Linear Accelerator Center (SLAC) since 1984. Richter has drawn the letter Z with his torch light, representing the Z-zero particle, one of the mediators of the weak nuclear force. In the 1960s, Richter worked on the Stanford electron storage rings, the first accelerator to collide subatomic particles together. In 1970-72, he directed the building of the SPEAR electron- positron Collider at SLAC, which yielded his discovery of the J/psi particle in 1974. For this work, Richter shared the 1976 Nobel prize in physics with Sam Ting, whose team at Brookhaven had also found the same particle. MODEL RELEASED [1986].
    USA_SCI_PHY_03_xs.jpg
  • Physics: Samuel C.C. Ting (b.1936), Project Director of the L-3 Detector Experiment at CERN's Large Electron- Positron Collider (LEP). Sam Ting won the 1976 Nobel Prize for physics (shared with Burton Richter), following his discovery of the J/Psi particle at the Brookhaven Laboratory in 1974. The J/Psi particle, and the Psi-prime particle discovered by Richter, implied the existence of two new quarks, Charm and anti-Charm. The L-3 experiment at CERN is designed to search for the fundamental particles of nature and the mechanism by which they receive their mass. MODEL RELEASED [1988]
    SWI_SCI_PHY_03_xs.jpg
  • Physics: British theoretical physicist Professor Peter Higgs seen in the Café Royal Pub in Edinburgh, Scotland (b. 1929). In 1964, Higgs predicted the existence of a new type of fundamental particle, commonly called the Higgs boson. This particle is required by many of the current Grand Unified Theories (or GUTs), which hope to explain three of the fundamental forces (electromagnetism, the weak & the strong nuclear forces) in a single unified theory. The Higgs boson is yet to be detected experimentally, but it is one of the main challenges of high-energy particle accelerators now being built. Higgs is professor of theoretical physics at Edinburgh University. MODEL RELEASED [1988]
    GBR_SCI_PHY_01_xs.jpg
  • Physics: British theoretical physicist Professor Peter Higgs in his University office in Edinburgh, Scotland (b. 1929). In 1964, Higgs predicted the existence of a new type of fundamental particle, commonly called the Higgs boson. This particle is required by many of the current Grand Unified Theories (or GUTs), which hope to explain three of the fundamental forces (electromagnetism, the weak & the strong nuclear forces) in a single unified theory. The Higgs boson is yet to be detected experimentally, but it is one of the main challenges of high-energy particle accelerators now being built. Higgs is professor of theoretical physics at Edinburgh University. MODEL RELEASED [1988]
    GBR_SCI_PHY_05_xs.jpg
  • Physics: British theoretical physicist Professor Peter Higgs seen in Holyrood Park overlooking Edinburgh, Scotland (b. 1929). In 1964, Higgs predicted the existence of a new type of fundamental particle, commonly called the Higgs boson. This particle is required by many of the current Grand Unified Theories (or GUTs), which hope to explain three of the fundamental forces (electromagnetism, the weak & the strong nuclear forces) in a single unified theory. The Higgs boson is yet to be detected experimentally, but it is one of the main challenges of high-energy particle accelerators now being built. Higgs is professor of theoretical physics at Edinburgh University. MODEL RELEASED [1988]
    GBR_SCI_PHY_03_xs.jpg
  • Physics: Assembly of Bismuth Germanium Oxide (BGO) Crystal for the L-3 experiment at CERN. BGO (formula Bi4 Ge3 O12) is used to detect electrons and photons generated by electron- positron collisions in the LEP Collider ring. When an electron or photon enters the crystal, its energy is converted into light. The light is channeled by the crystal to photodiodes, producing an electronic signal. 11, 000 crystals, totaling 12 tons in weight, are used in the detector, measuring the energy and position of the incoming particles at very high resolution. The LEP and L- 3 detector were inaugurated on 13 November 1989. Geneva, Switzerland..CERN is the European centre for particle physics near Geneva. L3 is one of 4 giant particle detectors at the LEP Collider. LEP collides electrons & positrons accelerated to an energy of 50 GeV in a circular tunnel 100m underground & 27km in circumference. L3 is a cylindrical assembly of many types of apparatus - hadron & electromagnetic calorimeters, drift chambers, & a time projection chamber - which fit together like layers of an onion around the point where the particles collide. L3 is a collaboration of 460 physicists from institutions in 13 countries. MODEL RELEASED [1988]
    SWI_SCI_PHY_06_xs.jpg
  • Physics: British theoretical physicist Professor Peter Higgs seen in Holyrood Park in Edinburgh, Scotland (b. 1929). In 1964, Higgs predicted the existence of a new type of fundamental particle, commonly called the Higgs boson. This particle is required by many of the current Grand Unified Theories (or GUTs), which hope to explain three of the fundamental forces (electromagnetism, the weak & the strong nuclear forces) in a single unified theory. The Higgs boson is yet to be detected experimentally, but it is one of the main challenges of high-energy particle accelerators now being built. Higgs is professor of theoretical physics at Edinburgh University. MODEL RELEASED [1988]
    GBR_SCI_PHY_02_xs.jpg
  • Physics: British theoretical physicist Professor Peter Higgs seen in Holyrood Park overlooking Edinburgh, Scotland (b. 1929). In 1964, Higgs predicted the existence of a new type of fundamental particle, commonly called the Higgs boson. This particle is required by many of the current Grand Unified Theories (or GUTs), which hope to explain three of the fundamental forces (electromagnetism, the weak & the strong nuclear forces) in a single unified theory. The Higgs boson is yet to be detected experimentally, but it is one of the main challenges of high-energy particle accelerators now being built. Higgs is professor of theoretical physics at Edinburgh University. MODEL RELEASED [1988]
    GBR_SCI_PHY_04_xs.jpg
  • Physics: Patrice Lebrun works on the detector for the L-3 experiment at CERN, which uses a Bismuth Germanium Oxide (BGO) Crystal. BGO (formula Bi4 Ge3 O12) is used to detect electrons and photons generated by electron- positron collisions in the LEP Collider ring. When an electron or photon enters the crystal, its energy is converted into light. The light is channeled by the crystal to photodiodes, producing an electronic signal. 11, 000 crystals, totaling 12 tons in weight, are used in the detector, measuring the energy and position of the incoming particles at very high resolution. The LEP and L- 3 detector were inaugurated on 13 November 1989. Geneva, Switzerland..CERN is the European centre for particle physics near Geneva. L3 is one of 4 giant particle detectors at the LEP Collider. LEP collides electrons & positrons accelerated to an energy of 50 GeV in a circular tunnel 100m underground & 27km in circumference. L3 is a cylindrical assembly of many types of apparatus - hadron & electromagnetic calorimeters, drift chambers, & a time projection chamber - which fit together like layers of an onion around the point where the particles collide. L3 is a collaboration of 460 physicists from institutions in 13 countries. MODEL RELEASED [1988]
    SWI_SCI_PHY_07_xs.jpg
  • The particle physics collaboration group in the detector pit of the L-3 experiment at CERN's Large Electron-Positron Collider (LEP) ring during its construction in [1988] (Sam Ting bottom left in trench coat.) The pit now contains detectors that can measure and identify the various electrons, muons and photons that are emitted following collision events. The main part of the detector is the large magnet, contained in a cubic space of 12 meters each side and weighing 7810 tons. The magnet surrounds the particle detectors; the vertex chamber, the electromagnetic calorimeter, the hadron calorimeter and the muon chamber. The LEP ring was inaugurated on 13 November 1989. The LEP ring was inaugurated on 13 November 1989. [1988].
    SWI_SCI_PHY_10_xs.jpg
  • Physics: Geneva, Switzerland/CERN: L-3 Experiment. Russian scientist Yuri Kamishkou seen with the Hadron Calorimeter. CERN is the European centre for particle physics near Geneva. L3 is one of 4 giant particle detectors at the LEP Collider. The L-3 experiment is part of CERN's Large Electron- Positron Collider (LEP), inaugurated on 13 November 1989. LEP collides electrons & positrons accelerated to an energy of 50 GeV in a circular tunnel 100m underground & 27km in circumference. L3 is a cylindrical assembly of many types of apparatus - hadron & electromagnetic calorimeters, drift chambers, & a time projection chamber - which fit together like layers of an onion around the point where the particles collide. L3 is a collaboration of 460 physicists from institutions in 13 countries. MODEL RELEASED [1988]
    SWI_SCI_PHY_04_xs.jpg
  • Physics: Geneva, Switzerland. CERN: L-3 Experiment. A technician (K. Reismann) works inside the L3 detector at CERN, the European centre for particle physics near Geneva. The L-3 experiment is part of CERN's Large Electron- Positron Collider (LEP), inaugurated on 13 November 1989. L3 is one of 4 giant particle detectors at the LEP Collider. LEP collides electrons & positrons accelerated to an energy of 50 GeV in a circular tunnel 100m underground & 27km in circumference. L3 is a cylindrical assembly of many types of apparatus - hadron & electromagnetic calorimeters, drift chambers, & a time projection chamber - which fit together, like layers of an onion around the point where the particles collide. L3 is a collaboration of 460 physicists from institutions in 13 countries. Aachen Group. MODEL RELEASED [1988].
    SWI_SCI_PHY_05_xs.jpg
  • Physics: Scientist Hans Hofer at CERN..CERN is the European centre for particle physics near Geneva. L3 is one of 4 giant particle detectors at the LEP Collider. LEP collides electrons & positrons accelerated to an energy of 50 GeV in a circular tunnel 100m underground & 27km in circumference. L3 is a cylindrical assembly of many types of apparatus - hadron & electromagnetic calorimeters, drift chambers, & a time projection chamber - which fit together like layers of an onion around the point where the particles collide. L3 is a collaboration of 460 physicists from institutions in 13 countries..Geneva, Switzerland. MODEL RELEASED [1988]
    SWI_SCI_PHY_08_xs.jpg
  • The particle physics collaboration group in the detector pit of the L-3 experiment at CERN's Large Electron-Positron Collider (LEP) ring during its construction in [1988] (Sam Ting bottom left, in trench coat.) The pit now contains detectors that can measure and identify the various electrons, muons and photons that are emitted following collision events. The main part of the detector is the large magnet, contained in a cubic space of 12 meters each side and weighing 7810 tons. The magnet surrounds the particle detectors; the vertex chamber, the electromagnetic calorimeter, the hadron calorimeter and the muon chamber. The LEP ring was inaugurated on 13 November 1989. [1988]
    SWI_SCI_PHY_11_xs.jpg
  • Burton Richter (b.1931), Director of the Stanford Linear Accelerator Center (SLAC), photographed during the construction of the Stanford Linear Collider in [1988] Richter won the 1976 Nobel Prize for Physics, following his discovery of the Psi- particle at the SLAC in 1974. The Prize was shared with Sam Ting of Brookhaven National Laboratory. The discovery of the Psi- particle also implied the existence of two new quarks, Charm and anti- Charm. Richter has been at SLAC since 1964, having also designed the PEP positron-electron storage ring at Stanford. Richter became Director of SLAC in 1984, and now oversees projects such as the Stanford Linear Positron-Electron Collider. MODEL RELEASED [1988]
    USA_SCI_PHY_02_xs.jpg
  • Burton Richter (b.1931), Director of the Stanford Linear Accelerator Center (SLAC), photographed during the construction of the Stanford Linear Collider in 1986. Richter won the 1976 Nobel Prize for Physics, following his discovery of the Psi- particle at the SLAC in 1974. The Prize was shared with Sam Ting of Brookhaven National Laboratory. The discovery of the Psi- particle also implied the existence of two new quarks, Charm and anti- Charm. Richter has been at SLAC since 1964, having also designed the PEP positron-electron storage ring at Stanford. Richter became Director of SLAC in 1984, and now oversees projects such as the Stanford Linear Positron-Electron Collider. MODEL RELEASED. Detector 4 SLC in CEH. MODEL RELEASED.
    USA_SCI_PHY_20_xs.jpg
  • Burton Richter (b.1931), Director of the Stanford Linear Accelerator Center (SLAC), photographed during the construction of the Stanford Linear Collider in [1988] Richter won the 1976 Nobel Prize for Physics, following his discovery of the Psi- particle at the SLAC in 1974. The Prize was shared with Sam Ting of Brookhaven National Laboratory. The discovery of the Psi- particle also implied the existence of two new quarks, Charm and anti- Charm. Richter has been at SLAC since 1964, having also designed the PEP positron-electron storage ring at Stanford. Richter became Director of SLAC in 1984, and now oversees projects such as the Stanford Linear Positron-Electron Collider. MODEL RELEASED [1988]
    USA_SCI_PHY_01_xs.jpg
  • Daily 8:00 AM team meeting. Burton Richter bottom left of image. Burton Richter (b.1931), Director of the Stanford Linear Accelerator Center (SLAC), photographed during the construction of the Stanford Linear Collider in [1988] Richter won the 1976 Nobel Prize for Physics, following his discovery of the Psi- particle at the SLAC in 1974. The Prize was shared with Sam Ting of Brookhaven National Laboratory. The discovery of the Psi- particle also implied the existence of two new quarks, Charm and anti- Charm. Richter has been at SLAC since 1964, having also designed the PEP positron-electron storage ring at Stanford. Richter became Director of SLAC in 1984, and now oversees projects such as the Stanford Linear Positron-Electron Collider. [1988]
    USA_SCI_PHY_21_xs.jpg
  • Matthew Jones, wearing 3-D glasses to view computer simulations, from the Stanford Linear Collider (SLC) experiment, seen with a computer-simulated collision event between an electron and a positron. The SLC produces Z-zero particles by this collision process, which takes place at extremely high energies. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was discovered at CERN in 1983. The scientist is seen wearing special glasses that enable viewing of computer- generated stereoscopic images of the particle tracks following the collision inside the Large Detector. The first Z-zero seen at SLC was detected on 11 April 1989. MODEL RELEASED [1988]
    USA_SCI_PHY_07_xs.jpg
  • Matthew Jones, wearing 3-D glasses to view computer simulations, from the Stanford Linear Collider (SLC) experiment, seen with a computer-simulated collision event between an electron and a positron. The SLC produces Z-zero particles by this collision process, which takes place at extremely high energies. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was discovered at CERN in 1983. The scientist is seen wearing special glasses that enable viewing of computer- generated stereoscopic images of the particle tracks following the collision inside the Large Detector. The first Z-zero seen at SLC was detected on 11 April 1989. MODEL RELEASED [1988]
    USA_SCI_PHY_08_xs.jpg
  • T-28 armor-plated aircraft used to fly through storm clouds to measure particle sizes and cloud electrification. Cape Canaveral (Kennedy Space Center), Florida. (1991).Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius.
    USA_SCI_LIG_15_xs.jpg
  • Physics: Geneva, Switzerland/CERN: John Bell (b.1928), Theoretical Physicist. John Bell was a theoretical physicist at CERN, the European laboratory for particle physics. He invented the "Bell inequalities" which allowed a better understanding of the foundations of quantum mechanics, the physics of the very small. MODEL RELEASED [1987]
    SWI_SCI_PHY_02_xs.jpg
  • Physics: Geneva, Switzerland/CERN: John Bell (b.1928), Theoretical Physicist. John Bell was a theoretical physicist at CERN, the European laboratory for particle physics. He invented the "Bell inequalities" which allowed a better understanding of the foundations of quantum mechanics, the physics of the very small. MODEL RELEASED [1987]
    SWI_SCI_PHY_01_xs.jpg
  • Particle Beam Fusion Accelerator used to test weapon components at Sandia National Laboratory site at Albuquerque, New Mexico USA. Sandia was established in 1945 as a weapons stockpiling site. Since then, Sandia has diversified to study a variety of science applications. These include research and development in fossil, solar, geothermal and nuclear energy production, nuclear waste management and environmental research. Sandia is also responsible for the design and development of non- nuclear components for atomic weapons. (1984)
    USA_SCI_NUKE_60_xs.jpg
  • Physics: Aligning Magnets in the 3 km tunnel of the Stanford Linear Accelerator Center (SLAC), Menlo Park, California.  Reverse Bend SLC Experiment, [1986].Technicians making final alignment checks in the tunnel of the Stanford Linear Collider (SLC). The SLC was built from the 3km linear accelerator at Stanford, California. In the SLC, electrons and positrons are accelerated to energies of 50 giga electron volts (GeV) before being forced to collide. In this collision, a Z-nought particle may be produced. The Z-nought is the mediator of the electroweak nuclear force, the force behind radioactive decay. The first Z-nought was detected at SLC on 11 April 1989, six years after its discovery at the European LEP accelerator ring, near Geneva..
    USA_SCI_PHY_25_xs.jpg
  • Particle Beam Fusion Accelerator used to test weapon components at Sandia National Laboratory site at Albuquerque, New Mexico USA. Sandia was established in 1945 as a weapons stockpiling site. Since then, Sandia has diversified to study a variety of science applications. These include research and development in fossil, solar, geothermal and nuclear energy production, nuclear waste management and environmental research. Sandia is also responsible for the design and development of non- nuclear components for atomic weapons. (1984)
    USA_SCI_NUKE_59_xs.jpg
  • Launching weather balloon with field mills into storm. Balloon is 1500 cubic feet surplus nylon with fins that is tethered and carries an electronic field meter. Langmuir Atmospheric Research Lab on Mt. Baldy, New Mexico (1992) Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius.
    USA_SCI_LIG_17_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Electronics Trailer. J. Chapman checks myriad connections..Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_19_xs.jpg
  • Alan Weinstein from the Stanford Linear Collider (SLC) experiment, seen with a computer-simulated collision event between an electron and a positron. The SLC produces Z-zero particles by this collision process, which takes place at energies high enough for the electron and positron to annihilate one another, the Z-zero left decaying rapidly into another electron/positron pair or a quark/anti-quark pair. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was discovered at CERN in 1983. The first Z-zero seen at SLC was detected on 11 April 1989. MODEL RELEASED [1988] Menlo Park, California.
    USA_SCI_PHY_06_xs.jpg
  • Summer lightning storm over Tucson, Arizona from Tumamoc Hill with Saguaro cactus. Storms erupt regularly during Arizona summers due to the moist air that flows in from the Gulf of California then collides with nearby mountains and is forced upward, where it condenses into thunderclouds. ..Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius. Tucson, Arizona, USA. (1992)
    USA_SCI_LIG_36_xs.jpg
  • Launching weather balloon with field mills into an approaching electrical lightning storm. Langmuir Atmospheric Research Lab on Mt. Baldy, New Mexico (1992) Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius.
    USA_SCI_LIG_14_xs.jpg
  • Launching weather balloon with field mills into an approaching electrical lightning storm.. Langmuir Atmospheric Research Lab on Mt. Baldy, New Mexico (1992) Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius..
    USA_SCI_LIG_13_xs.jpg
  • Summer lightning storm over Tucson, Arizona from Tumamoc Hill with Saguaro cactus. Storms erupt regularly during Arizona summers due to the moist air that flows in from the Gulf of California then collides with nearby mountains and is forced upward, where it condenses into thunderclouds. ..Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius. Tucson, Arizona, USA. (1992)
    USA_SCI_LIG_01_xs.jpg
  • Summer lightning storm over Tucson, Arizona from Tumamoc Hill with Saguaro cactus. Storms erupt regularly during Arizona summers due to the moist air that flows in from the Gulf of California then collides with nearby mountains and is forced upward, where it condenses into thunderclouds. ..Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius. Tucson, Arizona, USA. (1992)
    USA_SCI_LIG_001_nxs.jpg
  • Simulated lightning strike to a sailboat model in lab. Institution för Hopspänningsforkning, Husbyborg, Uppsala, Sweden. Engineer - Eric Löfberg (1991).Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius.
    SWE_SCI_LIG_02_xs.jpg
  • Simulated lightning strike to a TV antenna wire, exploding the wire. Institution for Hopspänningsforkning, Husbyborg, Uppsala, Sweden. Engineer - Eric Löfberg. (1991).Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius.
    SWE_SCI_LIG_01_xs.jpg
  • Lightning demonstration strikes model house and church with impulses of up to 800,000 volts. Deutsches Museum, Munich, Germany. 1991..Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius.
    GER_SCI_LIG_01_xs.jpg
  • Coober Pedy Opal Mine, Southern Australia. Opal is a form of hydrous silicon oxide. The stones are conglomerates of microscopic spherical particles - opal is never found as a true crystal. The blue/green and dark blue forms seen here are considered to be precious. Opal has a beautiful colored luster due to the varied dispersion of light from its structure. Opal may also be seen in fossils, where it replaces the organic matter (especially bones) in buried remains. [1989]
    AUS_SCI_DINO_16_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Control Room [1988]. Instrumentation displays inside the control room of the Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989.
    USA_SCI_PHY_29_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Control Room..Instrumentation displays inside the control room of the Stanford Linear Collider (SLC) experiment, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_22_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Rafe Schindler and Iris Abt with detector insert. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_18_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC) Helen Quinn, theoretician. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. MODEL RELEASED [1986].
    USA_SCI_PHY_05_xs.jpg
  • Physics: Proton Decay. Ohio, Morton Salt Mine 1985. Proton decay detector located 600 meters underground in the Morton salt mine near Cleveland, Ohio, which consists of a massive tank containing 21 cubic meters of ultra pure water, its walls lined with photomultiplier tubes, which detect faint flashes of Cerenkov light emitted by the passage of charged particles. MODEL RELEASED
    USA_SCI_PHY_28_xs.jpg
  • Arizona. Lightning. Time exposure image of lightning strikes over Tucson, Arizona, USA..The silhouette of a giant saguaro cactus (Carnegiea gigantea) is in the foreground at right and left. Car tail light trails are also seen in the foreground. Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius. Photographed in Tucson, Arizona, USA. .
    USA_AZ_06_xs.jpg
  • An opal miner displays a handful of opals. Opal is a form of hydrous silicon oxide. The stones are conglomerates of microscopic spherical particles - opal is never found as a true crystal. The blue/green and dark blue forms seen here are considered to be precious. Opal has a beautiful colored luster due to the varied dispersion of light from its structure. Opal may also be seen in fossils, where it replaces the organic matter (especially bones) in buried remains. These stones were photographed at Lightning Ridge in Australia, the world's most important source of precious opal.  [1989].
    AUS_SCI_DINO_15_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Large Detector Control Room. Instrumentation displays inside the control room of the Stanford Linear Collider (SLC) experiment, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_26_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Large Detector construction: sorting through the tens of thousands of fittings. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. [1988]
    USA_SCI_PHY_15_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC) Martin Perl, Physicist at SLAC..Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. MODEL RELEASED [1988]
    USA_SCI_PHY_10_xs.jpg
  • Physics: Proton Decay control room. Cleveland, Ohio, Morton Salt Mine proton decay detector located 600 meters underground in the Morton salt mine near Cleveland, Ohio, which consists of a massive tank containing 21 cubic meters of ultra pure water, its walls lined with photomultiplier tubes, which detect faint flashes of Cerenkov light emitted by the passage of charged particles. [1985]
    USA_SCI_PHY_24_xs.jpg
  • Summer lightning storm over Tucson, Arizona from Tumamoc Hill with Saguaro cactus. Storms erupt regularly during Arizona summers due to the moist air that flows in from the Gulf of California then collides with nearby mountains and is forced upward, where it condenses into thunderclouds. ..Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius. Tucson, Arizona, USA. (1992)
    USA_SCI_LIG_02_xs.jpg
  • Physics: Stanford Linear Accelerator Center (SLAC). Main complex. (1986) 3. 2 km (2 mile) long linear accelerator at the Stanford Linear Accel- erator Center (SLAC), California. The end at which the electrons start their journey is in the distance; the experimental areas where the accelerated electrons are smashed into targets, or used for further acceleration in electron-positron Colliders, is in the group of buildings seen here. The giant red- roofed building in the experimental area is End Station A, where the first evidence of quarks was discovered in 1968-72. .Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989.
    USA_SCI_PHY_37_xs.jpg
  • Physics: Assembly of Bismuth Germanium Oxide (BGO) Crystal for the L-3 experiment at CERN. BGO (formula Bi4 Ge3 O12) is used to detect electrons and photons generated by electron- positron collisions in the LEP Collider ring. When an electron or photon enters the crystal, its energy is converted into light. The light is channeled by the crystal to photodiodes, producing an electronic signal. 11, 000 crystals, totaling 12 tons in weight, are used in the detector, measuring the energy and position of the incoming particles at very high resolution. The LEP and L- 3 detector were inaugurated on 13 November 1989. Geneva, Switzerland. [1988]
    SWI_SCI_PHY_13_xs.jpg
  • Summer lightning storm over Tucson, Arizona from Tumamoc Hill with Saguaro cactus. Storms erupt regularly during Arizona summers due to the moist air that flows in from the Gulf of California then collides with nearby mountains and is forced upward, where it condenses into thunderclouds. ..Lightning occurs when a large electrical charge builds up in a cloud, probably due to the friction of water and ice particles. The charge induces an opposite charge on the ground, and a few leader electrons travel to the ground. When one makes contact, there is a huge backflow of energy up the path of the electron. This produces a bright flash of light, and temperatures of up to 30,000 degrees Celsius. Tucson, Arizona, USA. (1992)
    USA_SCI_LIG_32_xs.jpg
  • Physics: Pat Burchat, with a computer simulation reflected in her glasses at the Stanford Linear Accelerator Center (SLAC) Large Detector. Computer Simulated Event. Stanford Linear Collider (SLC) experiment, Menlo Park, California. With a length of 3km, the Stanford Linear Accelerator is the largest of its kind in the world. The accelerator is used to produce streams of electrons and positrons, which collide at a combined energy of 100 GeV (Giga electron Volts). This massive energy is sufficient to produce Z-zero particles in the collision. The Z-zero is one of the mediators of the weak nuclear force, the force behind radioactive decay, and was first discovered at CERN, Geneva, in 1983. The first Z-zero at SLC was produced on 11 April 1989. MODEL RELEASED [1988]
    USA_SCI_PHY_09_xs.jpg

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries